GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (16)
  • 2005-2009  (19)
Document type
Keywords
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Trimborn, Scarlett; Wolf-Gladrow, Dieter A; Richter, Klaus-Uwe; Rost, Björn (2009): The effect of pCO2 on carbon acquisition and intracellular assimilation in four marine diatoms. Journal of Experimental Marine Biology and Ecology, 376(1), 26-36, https://doi.org/10.1016/j.jembe.2009.05.017
    Publication Date: 2024-03-15
    Description: The effect of pCO2 on carbon acquisition and intracellular assimilation was investigated in the three bloom-forming diatom species, Eucampia zodiacus (Ehrenberg), Skeletonema costatum (Greville) Cleve, Thalassionema nitzschioides (Grunow) Mereschkowsky and the non-bloom-forming Thalassiosira pseudonana (Hust.) Hasle and Heimdal. In vivo activities of carbonic anhydrase (CA), photosynthetic O2 evolution, CO2 and HCO3? uptake rates were measured by membrane-inlet mass spectrometry (MIMS) in cells acclimated to pCO2 levels of 370 and 800 ?atm. To investigate whether the cells operate a C4-like pathway, activities of ribulose-1,5-bisphosphate carboxylase (RubisCO) and phosphoenolpyruvate carboxylase (PEPC) were measured at the mentioned pCO2 levels and a lower pCO2 level of 50 ?atm. In the bloom-forming species, extracellular CA activities strongly increased with decreasing CO2 supply while constantly low activities were obtained for T. pseudonana. Half-saturation concentrations (K1/2) for photosynthetic O2 evolution decreased with decreasing CO2 supply in the two bloom-forming species S. costatum and T. nitzschioides, but not in T. pseudonana and E. zodiacus. With the exception of S. costatum, maximum rates (Vmax) of photosynthesis remained constant in all investigated diatom species. Independent of the pCO2 level, PEPC activities were significantly lower than those for RubisCO, averaging generally less than 3%. All examined diatom species operate highly efficient CCMs under ambient and high pCO2, but differ strongly in the degree of regulation of individual components of the CCM such as Ci uptake kinetics and extracellular CA activities. The present data do not suggest C4 metabolism in the investigated species.
    Keywords: Alkalinity, Gran titration (Gran, 1950); Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Bicarbonate uptake; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated; Calculated after Freeman & Hayes (1992); Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; EPOCA; Eucampia zoodiacus; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Extracellular carbonic anhydrase activity; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Intracellular carbonic anhydrase activity per chlorophyll a; Isotopic fractionation, during photosynthis; Laboratory experiment; Laboratory strains; Light:Dark cycle; Measured by loss of 18O (Silverman, 1982); Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH meter, WTW, pH 3000; Phytoplankton; Primary production/Photosynthesis; Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Radiation, photosynthetically active; Salinity; see reference(s); Single species; Skeletonema costatum; Species; SPP1158; Temperature, water; Thalassionema nitzschioides; Thalassiosira pseudonana
    Type: Dataset
    Format: text/tab-separated-values, 1263 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-03-29
    Description: The haptophyte Phaeocystis antarctica is endemic to the Southern Ocean, where iron supply is sporadic and its availability limits primary production. In iron fertilization experiments, P. antarctica showed a prompt and steady increase in cell abundance compared to heavily silicified diatoms along with enhanced colony formation. Here we utilized a transcriptomic approach to investigate molecular responses to alleviation of iron limitation in P. antarctica. We analyzed the transcriptomic response before and after (14 h, 24 h, and 72 h) iron addition to a low-iron acclimated culture. After iron addition, we observed indicators of a quick reorganization of cellular energetics, from carbohydrate catabolism and mitochondrial energy production to anabolism. In addition to typical substitution responses from an iron-economic towards an iron-sufficient state for flavodoxin (ferredoxin) and plastocyanin (cytochrome c6 ), we found other genes utilizing the same strategy involved in nitrogen assimilation and fatty acid desaturation. Our results shed light on a number of adaptive mechanisms that P. antarctica uses under low iron, including the utilization of a Cu-dependent ferric reductase system and indication of mixotrophic growth. The gene expression patterns underpin P. antarctica as a quick responder to iron addition.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-09-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  EPIC3SOOS Online Workshop of the "Weddell Sea - Dronning Maud Land" Regional Working Group, online, 2020-10-20-2020-10-23
    Publication Date: 2020-10-29
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-01-25
    Description: Organic ligands such as exopolymeric substances (EPS) are known to form complexes with iron (Fe) and modulate phytoplankton growth. However, the effect of organic ligands on bacterial and viral communities remains largely unknown. Here, we assessed how Fe associated with organic ligands influences phytoplankton, microbial, and viral abundances and their diversity in the Southern Ocean. While the particulate organic carbon (POC) was modulated by Fe chemistry and bioavailability in the Drake Passage, the abundance and diversity of microbes and viruses were not governed by Fe bioavailability. Only following amendments with bacterial EPS did bacterial abundances increase, while phenotypic alpha diversity of bacterial and viral communities decreased. The latter was accompanied by significantly enhanced POC, pointing toward the relief of C limitation or other drivers of the microbial loop. Based on the literature and our findings, we propose a conceptual framework by which EPS may affect phytoplankton, bacteria, and viruses. Given the importance of the Southern Ocean for Earth’s climate as well as the prevalence of viruses and their increasingly recognized impact on marine biogeochemistry and C cycling; the role of microbe–virus interactions on primary productivity in the Southern Ocean needs urgent attention.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-01-25
    Description: In the Southern Ocean (SO), iron (Fe) limitation strongly inhibits phytoplankton growth and generally decreases their primary productivity. Diatoms are a key component in the carbon (C) cycle, by taking up large amounts of anthropogenic CO2 through the biological carbon pump. In this study, we investigated the effects of Fe availability (no Fe and 4 nM FeCl3 addition) on the physiology of Chaetoceros cf. simplex, an ecologically relevant SO diatom. Our results are the first combining oxygen evolution and uptake rates with particulate organic carbon (POC) build up, pigments, photophysiological parameters and intracellular trace metal (TM) quotas in an Fe-deficient Antarctic diatom. Decreases in both oxygen evolution (through photosynthesis, P) and uptake (respiration, R) coincided with a lowered growth rate of Fe-deficient cells. In addition, cells displayed reduced electron transport rates (ETR) and chlorophyll a (Chla) content, resulting in reduced cellular POC formation. Interestingly, no differences were observed in non-photochemical quenching (NPQ) or in the ratio of gross photosynthesis to respiration (GP:R). Furthermore, TM quotas were measured, which represent an important and rarely quantified parameter in previous studies. Cellular quotas of manganese, zinc, cobalt and copper remained unchanged while Fe quotas of Fe-deficient cells were reduced by 60% compared with High Fe cells. Based on our data, Fe-deficient Chaetoceros cf. simplex cells were able to efficiently acclimate to low Fe conditions, reducing their intracellular Fe concentrations, the number of functional reaction centers of photosystem II (RCII) and photosynthetic rates, thus avoiding light absorption rather than dissipating the energy through NPQ. Our results demonstrate how Chaetoceros cf. simplex can adapt their physiology to lowered assimilatory metabolism by decreasing respiratory losses.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  EPIC3Seminar, ETH Zürich, Environmental Physics (UP) Group
    Publication Date: 2021-05-12
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-10-12
    Description: recent study using Fe-limited phytoplankton strains, showed that iron (Fe) uptake rates normalized by cellular surface area were best related to dissolved iron (dFe) concentrations as the inorganic Fe (Fe’) supply rates were not sufficient to satisfy the Fe biological demand. Short-term (24 h) shipboard incubations with the in-situ phytoplankton community were used to measure Fe uptake rates that were normalized per biomass (as particulate organic carbon, POC). Fe uptake rates measured following 55FeCl3 additions (0.05 to 0.9 nM) were fitted to different Fe pools (dFe, Felabile, and Fe’) using the Michaelis-Menten equation. Data showed a similar high conditional stability constant for biological transporters across all sites and phytoplankton size classes, with only a 2-fold variation in the concentrations of cellular transporters. These observations are in line with previous reports that eukaryotic phytoplankton takes up Fe close to the limit imposed by transporters cellular density and uses similar high-affinity Fe uptake systems. To further explore the link between Fe uptake rates and Fe chemistry, we also studied the effect of Fe additions preequilibrated with different Fe-binding ligands (L) including: the siderophore desferrioxamine B, two carbohydrates (glucuronic acid and carrageenan) and two different bacterial exopolycarbohydrates (L6 and L22, referred as EPS). For all stations, phytoplankton were able to acquire Fe associated to DFB as previously reported, however, different Fe:L ratios prevent quantitative comparison with other studies. Iron bound to carbohydrates, glucuronic acid, carrageenan and EPS could enhance or decrease Fe uptake rates in comparison to equimolar FeCl3 addition. These results illustrate that the effect of such L on Fe uptake rates will depend on the in-situ plankton community and their chemical structure. The variation of the Fe’ concentrations was able to explain up to 69% of the Fe uptake rates observed for the Antarctic communities. This relationship with Fe’ was related to the fact that the Fe’ maximal supply, due to the dissociation of FeL, was enough to satisfy the measured Fe uptakes rates. Calculations using previous reports in contrasted regions of the Southern Ocean, showed that Fe’ maximal supply was greater than Fe uptake rates measured in 80% of the cases. Moreover, considering photo- and redox-chemistry as well as kinetical situations prevailing in the field, Fe’ should not be overlooked as a pool able to satisfy most of the Fe biological demand. Finally, this study points towards the potential that the GEOTRACES Fe chemical speciation data represent to explore Fe uptake rates at a larger scale in this vast Fe-limited oceanic region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-11-23
    Description: Responses of marine primary production to a changing climate are determined by a concert of multiple environmental changes, for example in temperature, light, pCO2, nutrients, and grazing. To make robust projections of future global marine primary production, it is crucial to understand multiple driver effects on phytoplankton. This meta-analysis quantifies individual and interactive effects of dual driver combinations on marine phytoplankton growth rates. Almost 50% of the single-species laboratory studies were excluded because central data and metadata (growth rates, carbonate system, experimental treatments) were insufficiently reported. The remaining data (42 studies) allowed for the analysis of interactions of pCO2 with temperature, light, and nutrients, respectively. Growth rates mostly respond non-additively, whereby the interaction with increased pCO2 profusely dampens growth-enhancing effects of high temperature and high light. Multiple and single driver effects on coccolithophores differ from other phytoplankton groups, especially in their high sensitivity to increasing pCO2. Polar species decrease their growth rate in response to high pCO2, while temperate and tropical species benefit under these conditions. Based on the observed interactions and projected changes, we anticipate primary productivity to: (a) first increase but eventually decrease in the Arctic Ocean once nutrient limitation outweighs the benefits of higher light availability; (b) decrease in the tropics and mid-latitudes due to intensifying nutrient limitation, possibly amplified by elevated pCO2; and (c) increase in the Southern Ocean in view of higher nutrient availability and synergistic interaction with increasing pCO2. Growth-enhancing effect of high light and warming to coccolithophores, mainly Emiliania huxleyi, might increase their relative abundance as long as not offset by acidification. Dinoflagellates are expected to increase their relative abundance due to their positive growth response to increasing pCO2 and light levels. Our analysis reveals gaps in the knowledge on multiple driver responses and provides recommendations for future work on phytoplankton.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  EPIC3EGU General Assembly 2020, Online Meeting, Vienna, Austria, 2020-05-04-2020-05-08
    Publication Date: 2020-12-08
    Description: The Southern Ocean (SO) accounts for over 40% of anthropogenically derived CO2 uptake. It is the world’s largest High-Nutrient Low-Chlorophyll (HNLC) region and the scarcity of trace metals such as iron (Fe) drives phytoplankton composition and biomass build up. Besides Fe, manganese (Mn) is the second most abundant trace metal since it is present in the thylakoids. As dissolved manganese (dMn) concentrations in the Atlantic sector of the SO are very low (0.04 nM), phytoplankton growth may not only be limited by Fe but also by Mn availability, a theory previously described by Martin et al. (1990). However, mechanistic studies investigating the effects of multiple trace metals limiting or co-limiting on growth and photosynthesis are lacking. This study focuses on the identification of the Fe-Mn co-limitation of natural phytoplankton assemblages to elucidate the impact of different Fe and Mn additions on species composition. To this end, two shipboard Fe-Mn addition bottle incubation experiments were conducted during the ‘RV Polarstern’ expedition PS97 in the Western and Eastern Drake Passage (DP) in 2016. This study highlights the importance of Mn in the otherwise Fe-limited Drake Passage. From microscopy samples, the addition of Fe and Mn together triggered the highest abundance of the genus Fragilariopsis sp. in the Western DP. In the Eastern DP, the nanophytoplankton fraction, detected by flow cytometry, reached the highest abundance only when both trace elements were provided, confirmed by highest chlorophyll-a build up. Moreover, the distinct response of Mn depletion relative to the Fe depletion support the findings that Fe and Mn do not substitute to each other. This experimental study highlights that both trace elements act as drivers of the ecology across the Drake Passage.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...