GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (1)
  • 2010-2014  (88)
Document type
Keywords
Years
Year
  • 1
    Publication Date: 2019-09-23
    Description: Fertilization of the ocean by adding iron compounds has induced diatom-dominated phytoplankton blooms accompanied by considerable carbon dioxide drawdown in the ocean surface layer. However, because the fate of bloom biomass could not be adequately resolved in these experiments, the timescales of carbon sequestration from the atmosphere are uncertain. Here we report the results of a five-week experiment carried out in the closed core of a vertically coherent, mesoscale eddy of the Antarctic Circumpolar Current, during which we tracked sinking particles from the surface to the deep-sea floor. A large diatom bloom peaked in the fourth week after fertilization. This was followed by mass mortality of several diatom species that formed rapidly sinking, mucilaginous aggregates of entangled cells and chains. Taken together, multiple lines of evidence—although each with important uncertainties—lead us to conclude that at least half the bloom biomass sank far below a depth of 1,000 metres and that a substantial portion is likely to have reached the sea floor. Thus, iron-fertilized diatom blooms may sequester carbon for timescales of centuries in ocean bottom water and for longer in the sediments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-08
    Description: Surface delta(15)N(PON) increased 3.92 +/- 0.48 over the course of 20 days following additions of iron (Fe) to an eddy in close proximity to the Antarctic Polar Front in the Atlantic sector of the Southern Ocean. The change in delta(15)N(PON) was associated with an increase in the 〉20 mu m size fraction, leading to a maximal difference of 6.23 between the 〉20 mu m and 〈20 mu m size fractions. Surface delta(13)C(POC) increased 1.18 +/- 0.31 over the same period. After a decrease in particulate organic matter in the surface layer, a second phytoplankton community developed that accumulated less biomass, had a slower growth rate and was characterized by an offset of 1.56 in delta(13)C(POC) relative to the first community. During growth of the second community, surface delta(13)C(POC) further increased 0.83 +/- 0.13. Here we speculate on ways that carboxylation, nitrogen assimilation, substrate pool enrichment and community composition may have contributed to the gradual increase in delta(13)C(POC) associated with phytoplankton biomass accumulation, as well as the systematic offset in delta(13)C(POC) between the two phytoplankton communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Publications Office of the European Union
    In:  In: Guide to Best Practices for Ocean Acidification Research and Data Reporting. , ed. by Riebesell, U., Fabry, V. J., Hansson, L. and Gattuso, J. P. Publications Office of the European Union, Luxembourg, pp. 181-200.
    Publication Date: 2020-05-06
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-06-19
    Description: Cruise M160 is part of concerted MOSES/REEBUS Eddy Study featuring three major research expeditions (M156, M160, MSM104). It aims to develop both a qualitative and quantitative understanding of the role of physical-chemical-biological coupling in eddies for the biological pump. The study is part of the MOSES “Ocean Eddies” event chain, which follows three major hypotheses to be addressed by the MOSES/REEBUS field campaigns: (1) Mesoscale and sub-mesoscale eddies play an important role in transferring energy along the energy cascade from the large-scale circulation to dissipation at the molecular level. (2) Mesoscale and sub-mesoscale eddies are important drivers in determining onset, magnitude and characteristics of biological productivity in the ocean and contribute significantly to global primary production and particle export and transfer to the deep ocean. (3) Mesoscale and sub-mesoscale eddies are important for shaping extreme biogeochemical environments (e.g., pH, oxygen) in the oceans, thus acting as a source/sink function for greenhouse gases. In contrast to the other two legs, MOSES Eddy Study II during M160 did not include any benthic work but focused entirely on the pelagic dynamics within eddies. It accomplished a multi-disciplinary, multi-parameter and multi-platform study of two discrete cyclonic eddies in an unprecedented complexity. The pre-cruise search for discrete eddies suitable for detailed study during M160 had already started a few months prior to the cruise. Remote sensing data products (sea surface height, sea surface temperature, ocean color/chlorophyll a) were used in combination with eddy detection algorithms and numerical modelling to identify and track eddies in the entire eddy field off West Africa. In addition, 2 gliders and 1 waveglider had been set out from Mindelo/Cabo Verde for pre-cruise mapping of the potential working area north of the Cabo Verdean archipelago. At the start of M160, a few suitable eddies – mostly of cyclonic type – had been identified, some of which were outside the safe operation range of the motorglider plane. As technical problems delayed the flight operations, the first eddy (center at 14.5°N/25°W) for detailed study was chosen to the southwest of the island of Fogo. It was decided to carry out a first hydrographic survey there followed by the deployment of a suite of instruments (gliders, waveglider, floats, drifter short-term mooring). Such instrumented, we left this first eddy and transited – via a strong anticyclonic feature southwest of the island of Santiago – to the region northeast of the island of Sal, i.e. in the working range of the glider plane. During the transit, a full suite of underway measurements as well as CTD/RO section along 22°W (16°-18.5°N) were carried in search for sub-surface expressions of anticyclonic eddy features. In the northeast, we had identified the second strong cyclonic eddy (center at 18°N/22.5°W) which was chosen for detailed study starting with a complete hydrographic survey (ADCP, CTD/RO, other routine station work). After completion of the mesoscale work program, we identified a strong frontal region at the southwestern rim of the cyclonic eddy, which was chosen for the first sub-mesoscale study with aerial observation component. There, the first dye release experiment was carried out which consisted of the dye release itself followed by an intense multi-platforms study of the vertical and horizontal spreading of the initial dye streak. This work was METEOR-Berichte, Cruise M160, Mindelo – Mindelo, 23.11.2019 4 – 20.12.2019 supported and partly guided by aerial observation of the research motorglider Stemme, which was still somewhat compromised by technical issues and meteorological conditions (high cloud cover, Saharan dust event). Nevertheless, this first dye release experiment was successful and showed rapid movement of the dynamic meandering front. After completion of work on this second eddy and execution of a focused sampling program at the Cape Verde Ocean Observation, RV METEOR returned to the first eddy for continuation of the work started there in the beginning of the cruise. This was accompanied by a relocation of the airbase of Stemme from the international airport of Sal to the domestic airport of Fogo. The further execution of the eddy study at this first eddy, which again included a complete hydrographic survey followed by a mesoscale eddy study with dye release, was therefore possible with aerial observations providing important guidance for work on RV METEOR. Overall, M160 accomplished an extremely intense and complex work program with 212 instrument deployments during station work, 137 h of observation with towed instruments and a wide range of underway measurements throughout the cruise. Up to about 30 individually tracked platforms (Seadrones, glider, wavegliders, drifters, floats) were in the water at the same time providing unprecedented and orchestrated observation capabilities in an eddy. All planned work components were achieved and all working groups acquired the expected numbers of instrument deployments and sampling opportunities.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-04
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  EPIC33rd EOS Topial Meeting on Blue Photonics – Optics in the Sea (Blue Photonics 3), Royal Netherlands Institute for Sea Research (NIOZ), Texel (NL), 2013-03-18-2013-03-20
    Publication Date: 2019-07-17
    Description: Quantitative distributions of major functional PFTs of the world ocean improve the understanding of the role of marine phytoplankton in the global marine ecosystem and biogeochemical cycles. Chl-a fluorescence gives insight on the health of phytoplankton and is related to phytoplankton biomass. In this study, global ocean color satellite products of different dominant phytoplankton functional types' (PFTs') biomass and chlorophyll fluorescence retrieved from hyperspectral satellite data using Differential Optical Absorption Spectroscopy applied to phytoplankton (PhytoDOAS) are presented (see also Bracher et al. 2009, Sadeghi et al. 2012a). Data are compared to ocean color products from multispectral sensors and application of the hyperspectral data set in studying phytoplankton dynamics are presented (Sadeghi et al. 2012b, Ying et al. 2012). Although current hyperspectral sensors have poor spatial resolution (〉30kmx30km), they are useful for the verification and improvement of the high spatially resolved multi-spectral ocean color products. Future applications of PhytoDOAS retrieval to other hyperspectral sensors and its synergistic use with information gained from multispectral ocean color sensors are proposed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: Quantitative distribution of major functional phytoplankton types (PFTs) of the world ocean improves the understanding of the role of marine phytoplankton in the global marine ecosystem and biogeochemical cycles. Because phytoplankton pigments absorb light for photosynthesis, satellite sensors detecting the ocean color can monitor phytoplankton on the global scale with reasonable spatial and temporal resolution. The analysis of hyper-spectral satellite data with PhytoDOAS, a method of Differential Optical Absorption Spectroscopy (DOAS) currently specialized for SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Cartography) on ENVISAT (details in Bracher et al. 2009, Sadegi et al. 2011), enables to extract the optical signature of marker pigments specific for certain PFTs. With including the calculation of the light penetration depth derived from the retrieval of inelastic scattering, the biomass (chl-a) of the PFTs is calculated and data from 2002-2011 have been processed. The lecture will give insight on the retrieval method and show the global maps of PFT distribution of four different dominant PFTs (diatoms, cyanobacteria, coccolithophores, dinoflagellates). In addition, results of evaluating the PHYTODOAS PFT products with in-situ data obtained from collocated pigment water samples analyzed via HPLC, with other satellite and model PFT products will be shown. The use of these global PFT satellite data sets for studying PFT bloom dynamics in specific oceanic regions or for evaluating an ecosystem model will be presented. References: Bracher A., Vountas M., Dinter T., Burrows J.P., Rottgers R., Peeken I. (2009) Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data. Biogeosciences 6: 751-764 Sadeghi A., Dinter T., Vountas M., Taylor B., Peeken I., Bracher A. Improvements to PhytoDOAS method for identification of major phytoplankton groups using high spectrally resolved satellite data. Ocean Sciences (submitted)
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Biogeosciences, Copernicus Publications, 9, pp. 2585-2596
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Biogeosciences, COPERNICUS GESELLSCHAFT MBH, 8, pp. 3609-3629, ISSN: 1726-4170
    Publication Date: 2019-07-17
    Description: The relationship between phytoplankton assemblages and the associated optical properties of the water body is important for the further development of algorithms for large-scale remote sensing of phytoplankton biomass and the identification of phytoplankton functional types (PFTs), which are often representative for different biogeochemical export scenarios. Optical in-situ measurements aid in the identification of phytoplankton groups with differing pigment compositions and are widely used to validate remote sensing data. In this study we present results from an interdisciplinary cruise aboard the RV Polarstern along a north-to-south transect in the eastern Atlantic Ocean in November 2008. Phytoplankton community composition was identified using a broad set of in-situ measurements. Water samples from the surface and the depth of maximum chlorophyll concentration were analyzed by high performance liquid chromatography (HPLC), flow cytometry, spectrophotometry and microscopy. Simultaneously, the above- and underwater light field was measured by a set of high spectral resolution (hyperspectral) radiometers. An unsupervised cluster algorithm applied to the measured parameters allowed us to define bio-optical provinces, which we compared to ecological provinces proposed elsewhere in the literature. As could be expected, picophytoplankton was responsible for most of the variability of PFTs in the eastern Atlantic Ocean. Our bio-optical clusters agreed well with established provinces and thus can be used to classify areas of similar biogeography. This method has the potential to become an automated approach where satellite data could be used to identify shifting boundaries of established ecological provinces or to track exceptions from the rule to improve our understanding of the biogeochemical cycles in the ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: The PhytoDOAS algorithm by Bracher et al. (2009), modified by and Sadeghi et al. (2011), enables the concurrent retrieval of global chl-a of phytoplankton groups (diatoms, cyanobacteria, coccolithophores, dinoflagellates) from hyperspectral satellite data, such as measured by SCIAMACHY onboard ENVISAT. For applying the Differential Optical Absorption Spectroscopy (DOAS) fit from 430-530nm the following absorbers are considered in the analysis: atmosphere: O3, O4, NO2, H2Og, Glyoxal, Ring; ocean: inelastic scattering, water, PFTs; The non-differentisl absorption and scattering is approximated with low order polynomial. The global data set of the four phytoplankton groups is avaiable on a monthly resolution for July 2002 until today.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...