GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (1)
  • 2015-2019  (10)
  • 1
    Keywords: Forschungsbericht ; Meeresbergbau ; Umweltbelastung
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (304 Seiten, 14,8 MB) , Illustrationen, Diagramme
    Language: German , English
    Note: Förderkennzeichen BMBF 03F0707 A-G. - Verbund-Nummer 01155327. - Literaturangaben , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Text überwiegend deutsch, teilweise englisch. - Sprache der Zusammenfassungen: Deutsch, Englisch
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: The manganese nodule belt within the Clarion and Clipperton Fracture Zones (CCZ) in the abyssal NE Pacific Ocean is characterized by numerous seamounts, low organic matter (OM) depositional fluxes and meter-scale oxygen penetration depths (OPD) into the sediment. The region hosts contract areas for the exploration of polymetallic nodules and Areas of Particular Environmental Interest (APEI) as protected areas. In order to assess the impact of potential mining on these deep-sea sediments and ecosystems, a thorough determination of the natural spatial variability of depositional and geochemical conditions as well as biogeochemical processes and element fluxes in the different exploration areas is required. Here, we present a comparative study on (1) sedimentation rates and bioturbation depths, (2) redox zonation of the sediments and element fluxes as well as (3) rates and pathways of biogeochemical reactions at six sites in the eastern CCZ. The sites are located in four European contract areas and in the APEI3. Our results demonstrate that the natural spatial variability of depositional and (bio)geochemical conditions in this deep-sea sedimentary environment is much larger than previously thought. We found that the OPD varies between 1 and 4.5 m, while the sediments at two sites are oxic throughout the sampled interval (7.5 m depth). Below the OPD, manganese and nitrate reduction occur concurrently in the suboxic zone with pore-water Mn2+ concentrations of up to 25 µM. The thickness of the suboxic zone extends over depth intervals of less than 3 m to more than 8 m. Our data and the applied transport-reaction model suggest that the extension of the oxic and suboxic zones is ultimately determined by the (1) low flux of particulate organic carbon (POC) of 1–2 mg Corg m−2 d−1 to the seafloor, (2) low sedimentation rates between 0.2 and 1.15 cm kyr−1 and (3) oxidation of pore-water Mn2+ at depth. The diagenetic model reveals that aerobic respiration is the main biogeochemical process driving OM degradation. Due to very low POC fluxes of 1 mg Corg m−2 d−1 to the seafloor at the site investigated in the protected APEI3 area, respiration rates are twofold lower than at the other study sites. Thus, the APEI3 site does not represent the (bio)geochemical conditions that prevail in the other investigated sites located in the European contract areas. Lateral variations in surface water productivity are generally reflected in the POC fluxes to the seafloor across the various areas but deviate from this trend at two of the study sites. We suggest that the observed spatial variations in depositional and (bio)geochemical conditions result from differences in the degree of degradation of OM in the water column and heterogeneous sedimentation patterns caused by the interaction of bottom water currents with seafloor topography.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: Commercial-scale mining for polymetallic nodules could have a major impact on the deepsea environment, but the effects of these mining activities on deep-sea ecosystems are very poorly known. The first commercial test mining for polymetallic nodules was carried out in 1970. Since then a number of small-scale commercial test mining or scientific disturbance studies have been carried out. Here we evaluate changes in faunal densities and diversity of benthic communities measured in response to these 11 simulated or test nodule mining disturbances using meta-analysis techniques. We find that impacts are often severe immediately after mining, with major negative changes in density and diversity of most groups occurring. However, in some cases, the mobile fauna and small-sized fauna experienced less negative impacts over the longer term. At seven sites in the Pacific, multiple surveys assessed recovery in fauna over periods of up to 26 years. Almost all studies show some recovery in faunal density and diversity for meiofauna and mobile megafauna, often within one year. However, very few faunal groups return to baseline or control conditions after two decades. The effects of polymetallic nodule mining are likely to be long term. Our analyses show considerable negative biological effects of seafloor nodule mining, even at the small scale of test mining experiments, although there is variation in sensitivity amongst organisms of different sizes and functional groups, which have important implications for ecosystem responses. Unfortunately, many past studies have limitations that reduce their effectiveness in determining responses. We provide recommendations to improve future mining impact test studies. Further research to assess the effects of test-mining activities will inform ways to improve mining practices and guide effective environmental management of mining activities.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-02-01
    Description: Polymetallic nodule mining at abyssal depths in the Clarion Clipperton Fracture Zone (Eastern Central Pacific) will impact one of the most remote and least known environments on Earth. Since vast areas are being targeted by concession holders for future mining, large-scale effects of these activities are expected. Hence, insight into the fauna associated with nodules is crucial to support effective environmental management. In this study video surveys were used to compare the epifauna from sites with contrasting nodule coverage in four license areas. Results showed that epifaunal densities are more than two times higher at dense nodule coverage (〉25 versus ≤10 individuals per 100 m2), and that taxa such as alcyonacean and antipatharian corals are virtually absent from nodule-free areas. Furthermore, surveys conducted along tracks from trawling or experimental mining simulations up to 37 years old, suggest that the removal of epifauna is almost complete and that its full recovery is slow. By highlighting the importance of nodules for the epifaunal biodiversity of this abyssal area, we urge for cautious consideration of the criteria for determining future preservation zones.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Springer
    In:  In: Faszination Meeresforschung : ein ökologisches Lesebuch. , ed. by Hempel, G., Bischof, K. and Hagen, W. Springer, Heidelberg, Germany, pp. 179-210. 2. Aufl. ISBN 978-3-662-49713-5
    Publication Date: 2020-04-03
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-11-18
    Description: Abyssal plains of the Clarion Clipperton Fracture Zone (CCZ) in the NE Pacific Ocean probably harbour one of the world’s most diverse ecosystems. Gaining a basic understanding of the mechanisms underlying the evolution and persistence of CCZ biodiversity in terms of biogeography and connectivity has both scientific merit and informs the development of policy related to potential future deep-sea mining of mineral resources at an early stage in the process. Existing archives of polychaetes and isopods were sorted using a combined molecular and morphological approach, which uses nucleotide sequences (cytochrome c oxidase subunit I (COI)) and morphological information to identify appropriate sample sets for further investigations. Basic patterns of genetic diversity, divergence and demographic history of five polychaete and five isopod species were investigated. Polychaete populations were found to be genetically diverse. Pronounced long- and short-distance dispersal produces large populations that are continuously distributed over large geographic scales. Although analyses of isopod species suggest the same, spatial genetic structuring of populations do imply weak barriers to gene flow. Mining-related, large-scale habitat destruction has the potential to impact the continuity of both isopod and polychaete populations as well as their long-term dispersal patterns, as ecosystem recovery after major impacts is predicted to occur slowly at evolutionary time scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-31
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Springer | Senckenberg Gesellschaft für Naturforschung
    In:  Marine Biodiversity, 47 (2). pp. 311-321.
    Publication Date: 2020-02-06
    Description: Organic falls can form nutrient-rich, ephemeral hotspots of productivity and biodiversity at the deep-sea floor, especially in food-poor abyssal plains. We report here the first wood falls and second carcass fall recorded from the Clarion-Clipperton Zone in the tropical eastern Pacific Ocean, an area that could be mined for polymetallic nodules in the future. A small cetacean fall in the mobile-scavenger stage likely recently arrived on the seafloor was observed, whereas most of the wood falls were highly degraded. There were multiple species in attendance at the wood falls including organic-fall specialists such as Xylophagaidae molluscs. Many of the taxa attending the carcass fall were known mobile scavengers that regularly attend bait parcels in the Pacific Ocean. These results further confirm that wood falls can occur at large distances (〉1450 km) from major land masses, providing an adequate supply of wood to the abyssal seafloor for colonization by wood-boring molluscs and associated fauna. Organic falls may be regionally abundant and are likely to influence species and habitat diversity in the abyssal areas of the Clarion-Clipperton Zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-06-30
    Description: Benthic fauna refers to all fauna that live in or on the seafloor, which researchers typically divide into size classes meiobenthos (32/64 μm–0.5/1 mm), macrobenthos (250 μm–1 cm), and megabenthos (〉1 cm). Benthic fauna play important roles in bioturbation activity, mineralization of organic matter, and in marine food webs. Evaluating their role in these ecosystem functions requires knowledge of their global distribution and biomass. We therefore established the BenBioDen database, the largest open-access database for marine benthic biomass and density data compiled so far. In total, it includes 11,792 georeferenced benthic biomass and 51,559 benthic density records from 384 and 600 studies, respectively. We selected all references following the procedure for systematic reviews and metaanalyses, and report biomass records as grams of wet mass, dry mass, or ash-free dry mass, or carbon per m2 and as abundance records as individuals per m2. This database provides a point of reference for future studies on the distribution and biomass of benthic fauna.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-08-27
    Description: Knowledge of zooplankton community structure is essential to understand ecosystem functioning. Therefore, accurate species identification is a crucial step in plankton studies. Yet, with the current array of methodologies, species richness is still largely underestimated and high-resolution distribution patterns remain unknown. A novel, cost-effective and rapid alternative to morphological or genetic approaches is the identification of species by proteomic fingerprinting based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The present study aims to demonstrate the applicability of proteomic fingerprinting for large-scale identification and quantification of the pelagic copepod family Spinocalanidae. Therefore, MALDI-TOF MS was applied to discriminate, identify and quantify adult and juvenile planktonic copepods of the ecologically important deep-sea copepod family Spinocalanidae from stratified depth samples (0–1000 m) at two stations in the eastern tropical Atlantic. Spectral peak data from 1178 spinocalanid specimens of all developmental stages were compared with a reference library of previous proteomic fingerprints of genetically and morphologically identified spinocalanid species. A comparison with the library yielded 25 valid species clusters, which were used to create fine-scale vertical distribution profiles with a high species and stage resolution. Further, we were able to show vertical habitat partitioning among cryptic species and developmental stages, which has major consequences for our understanding of niche partitioning of the mesopelagic realm. Thus, proteomic fingerprinting holds great potential in accelerating and improving community analysis, providing a powerful tool to obtain new insights into biodiversity processes, phylogeographic patterns and mechanisms of vertical distribution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...