GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • EUROPEAN RESEARCH NETWORK ON AQUATIC INVASIVE SPECIES  (2)
  • Frontiers  (1)
  • 2020-2024  (1)
  • 2020-2022
  • 2015-2019  (2)
  • 1
    Publication Date: 2024-02-07
    Description: The northern Humboldt Current upwelling system (HCS) belongs to the most productive marine ecosystems, providing five to eight times higher fisheries landings per unit area than other coastal upwelling systems. To solve this “Peruvian puzzle”, to elucidate the pelagic food-web structure and to better understand trophic interactions in the HCS, a combined stable isotope and fatty acid trophic biomarker approach was adopted for key zooplankton taxa and higher trophic positions with an extensive spatial coverage from 8.5 to 16°S and a vertical range down to 1,000 m depth. A pronounced regional shift by up to ∼5‰ in the δ15N baseline of the food web occurred from North to South. Besides regional shifts, δ15N ratios of particulate organic matter (POM) also tended to increase with depth, with differences of up to 3.8‰ between surface waters and the oxygen minimum zone. In consequence, suspension-feeding zooplankton permanently residing at depth had up to ∼6‰ higher δ15N signals than surface-living species or diel vertical migrants. The comprehensive data set covered over 20 zooplankton taxa and indicated that three crustacean species usually are key in the zooplankton community, i.e., the copepods Calanus chilensis at the surface and Eucalanus inermis in the pronounced OMZ and the krill Euphausia mucronata, resulting in an overall low number of major trophic pathways toward anchovies. In addition, the semi-pelagic squat lobster Pleuroncodes monodon appears to play a key role in the benthic-pelagic coupling, as indicated by highest δ13C’ ratios of −14.7‰. If feeding on benthic resources and by diel vertical migration, they provide a unique pathway for returning carbon and energy from the seafloor to the epipelagic layer, increasing the food supply for pelagic fish. Overall, these mechanisms result in a very efficient food chain, channeling energy toward higher trophic positions and partially explaining the “Peruvian puzzle” of enormous fish production in the HCS.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    EUROPEAN RESEARCH NETWORK ON AQUATIC INVASIVE SPECIES
    In:  EPIC3Aquatic Invasions, EUROPEAN RESEARCH NETWORK ON AQUATIC INVASIVE SPECIES, 12, ISSN: 1818-5487
    Publication Date: 2017-01-12
    Description: The Asian shore crab Hemigrapsus sanguineus (De Haan, 1853) has recently established populations in the North Sea and now occurs within the native ranges of the green crab Carcinus maenas (Linnaeus, 1758). To determine potential competitive effects and to assess the progress of the invasion, species-specific population characteristics (numerical abundances, biomasses, and size distributions) of the two species around the island of Helgoland (German Bight, southern North Sea) were compared for surveys conducted in 2009 and 2014. Sampling sites were chosen based on accessibility and differed in their topography and wave exposure, which allowed testing for the influence of these factors on the establishment success of H. sanguineus. The numerical abundance and biomass of H. sanguineus increased markedly and approached those of C. maenas in 2014. At a sheltered site, H. sanguineus even outnumbered C. maenas, whereas the converse was observed at a site exposed to strong winds and waves. Although such contrasting abundance patterns between the native and the introduced shore crab may be the result of direct interference, the dominance of H. sanguineus at the sheltered site may also be explained by enhanced larval settling rates caused by odors of conspecifics. The results suggest that the invasion of H. sanguineus has not yet reached its equilibrium, and population abundances in the North Sea are expected to further increase in the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    EUROPEAN RESEARCH NETWORK ON AQUATIC INVASIVE SPECIES
    In:  EPIC3Aquatic Invasions, EUROPEAN RESEARCH NETWORK ON AQUATIC INVASIVE SPECIES, 12(1), pp. 85-96, ISSN: 1818-5487
    Publication Date: 2017-04-07
    Description: The Asian shore crab Hemigrapsus sanguineus (De Haan, 1853) has recently established populations in the North Sea and now occurs within the native ranges of the green crab Carcinus maenas (Linnaeus, 1758). To determine potential competitive effects and to assess the progress of the invasion, species-specific population characteristics (numerical abundances, biomasses, and size distributions) of the two species around the island of Helgoland (German Bight, southern North Sea) were compared for surveys conducted in 2009 and 2014. Sampling sites were chosen based on accessibility and differed in their topography and wave exposure, which allowed testing for the influence of these factors on the establishment success of H. sanguineus. The numerical abundance and biomass of H. sanguineus increased markedly and approached those of C. maenas in 2014. At a sheltered site, H. sanguineus even outnumbered C. maenas, whereas the converse was observed at a site exposed to strong winds and waves. Although such contrasting abundance patterns between the native and the introduced shore crab may be the result of direct interference, the dominance of H. sanguineus at the sheltered site may also be explained by enhanced larval settling rates caused by odors of conspecifics. The results suggest that the invasion of H. sanguineus has not yet reached its equilibrium, and population abundances in the North Sea are expected to further increase in the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...