GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-24
    Description: Poseidon 533 – AIMAC (Atmosphere–ocean–island-biogeochemical interactions in the Macaronesian Archipelagos) investigated the influence of the Cape Verdes, the Canary Islands, and Madeira on the physics, chemistry and biology of the surrounding subtropical North- East Atlantic ocean. The air – sea exchange of halocarbons from marine sources impact tropospheric and stratospheric chemistry, and therewith air quality and human health. High oceanic and atmospheric concentrations of iodinated, brominated and chlorinated methanes are often found near coastlines. In particular, bromoform (CHBr3) was recently detected at unexpectedly high concentrations in seawater of subtropical coasts, e.g. at Miami and Tenerife beaches. Bromoform is produced naturally from macro algae and phytoplankton and is the major marine vector of organic bromine to the atmosphere. Together with dibromomethane (CH2Br2), it is the main contributor to natural stratospheric bromine, involved in ozone depletion. Bromoform is also a major product during disinfection of seawater for many industrial and recreational purposes and during desalination processes. While the bromoform production from phytoplankton generally leads to picomolar concentrations in seawater, macroalgal production yields nanomolar concentrations and disinfection processes involving seawater can increase concentrations to micromolar levels. The latter has led to the occasional application of this compound as tracer for the effluents of power plants and wastewater discharges. Other disinfection by-products (DBP) in the effluents can lead to unfavorable effects on the environment and human health. As bromoform shows large concentrations in urbanized and industrialized regions, the elevated concentrations at many coasts may have a major and increasing contribution to the global budget.. We hypothesize, that populated coastlines show elevated bromoform concentrations from disinfection activities, related to the amount of population and industrial activities. Coastal alongshore currents may additionally trap the compound inshore. Therefore, bromoform can be a good tracer of the terrestrial and anthropogenic signal in the island mass effect, which describes the increase in nutrients and biological productivity in the surrounding water masses of an island. POS533 investigated the bromoform distribution in ocean and atmosphere in the subtropical East Atlantic and the islands of Madeira, Tenerife, Gran Canaria and the Cape Verde Archipelago, considering physical and biogeochemical parameters, phytoplankton distribution and carbon chemistry. During the cruise new scientific tools where applied, to differentiate between the islands natural and anthropogenic interactions with ocean and atmosphere. The measurements deliver the first comprehensive biogeochemical data set of phytoplankton, microbiology, trace gases, carbon, oxygen and nutrient cycling from this region close the islands in exchange with the open ocean. Despite the novel knowledge, current climate chemistry and chemical transport models used to understand the anthropogenic signal of marine halocarbon emissions and their effects on tropospheric oxidation and stratospheric ozone will benefit from the expedition's dataset.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  [Poster] In: EGU General Assembly 2019, 08.-13.04.2019, Vienna, Austria .
    Publication Date: 2019-12-03
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  UNSPECIFIED, 2 pp.
    Publication Date: 2019-03-18
    Description: Dritter Wochenbericht der FS Poseidon Expedition POS 533 - AIMAC Atmosphäre-Ozean-Inseln-Biogeochemische Wechselwirkungen in den Makaronesischen Archipelen der Kap Verden, der Kanaren und Madeira (11.03.-17.03.2019) Mindelo (Kap Verden) - Las Palmas (Gran Canaria) - Funchal (Madeira) - Las Palmas
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  UNSPECIFIED, 2 pp.
    Publication Date: 2019-03-11
    Description: Zweiter Wochenbericht der FS Poseidon Expedition POS 533 - AIMAC Atmosphäre-Ozean-Inseln-Biogeochemische Wechselwirkungen in den Makaronesischen Archipelen der Kap Verden, der Kanaren und Madeira (04.03.-10.03.2019) Mindelo (Kap Verden) - Las Palmas (Gran Canaria) - Funchal (Madeira) - Las Palmas
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  UNSPECIFIED, 2 pp.
    Publication Date: 2019-03-04
    Description: Erster Wochenbericht der FS Poseidon Expedition POS 533 - AIMAC Atmosphäre-Ozean-Inseln-Biogeochemische Wechselwirkungen in den Makaronesischen Inselketten der Kap Verden, der Kanaren und Madeira (28.02.-03.03.2019) Mindelo (Kap Verden) - Las Palmas (Gran Canaria) - Funchal (Madeira) - Las Palmas
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  [Talk] In: SOLAS Open Science Conference 2019, 21.-25.04.2019, Sapporo, Japan .
    Publication Date: 2019-12-03
    Description: Large volumes of seawater are used in different industrial sectors such as power plants and ships. Chemical disinfection of this seawater prevents bio-fouling, but also produces halogenated disinfection by-products (DBPs). One major DBP is bromoform whose anthropogenic input to the environment is highly uncertain. Halocarbons such as bromoform impact the oxidation of trace gases and ozone chemistry in the atmosphere. We quantify the contribution of DBPs from industrial waste water to oceanic halocarbon concentrations and their impact on atmospheric chemistry. Based on industrial water discharge and DBP estimates, we simulate oceanic pathways of halocarbons along NEMO-ORCA12 driven Lagrangian trajectories. Anthropogenic halocarbon concentration are strongly enhanced along the coasts in Southeast Asia, but also allow for transport into the open ocean. We highlight bromoform showing that its anthropogenic sources can explain much of observed shelf water concentrations. We show how anthropogenic marine bromine impacts tropospheric and stratospheric ozone chemistry compared to natural background emissions.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-04-06
    Description: Ballast water treatment is required for vessels to prevent the introduction of potentially invasive neobiota. Some treatment methods use chemical disinfectants which produce a variety of halogenated compounds as disinfection by-products (DBPs). One of the most abundant DBP from oxidative ballast water treatment is bromoform (CHBr3) where we find an average concentration of 894±560nmolL-1 (226±142μgL-1) in the undiluted ballast water from measurements and literature. Bromoform is a relevant gas for atmospheric chemistry and ozone depletion, especially in the tropics where entrainment into the stratosphere is possible. The spread of DBPs in the tropics over months to years is assessed here for the first time. With Lagrangian trajectories based on the NEMO-ORCA12 model velocity field, we simulate DBP spread in the sea surface and try to quantify the oceanic bromoform concentration and emission to the atmosphere from ballast water discharge at major harbours in the tropical region of Southeast Asia. The exemplary simulations of two important regions, Singapore and the Pearl River Delta, reveal major transport pathways of the DBPs and the anthropogenic bromoform concentrations in the sea surface. Based on our simulations, we expect DBPs to spread into the open ocean, along the coast and also an advection with monsoon-driven currents into the North Pacific and Indian Ocean. Furthermore, anthropogenic bromoform concentrations and emissions are predicted to increase locally around large harbours. In the sea surface around Singapore we estimate an increase in bromoform concentration by 9% compared to recent measurement. In a moderate scenario where 70% of the ballast water is chemically treated bromoform emissions to the atmosphere can locally exceed 1000pmolm-2h-1 and double climatological emissions. In the Pearl River Delta all bromoform is directly outgassed which leads to an additional bromine (Br) input into the atmosphere of 495kmolBr (∼42tCHBr3) a-1. From Singapore ports the additional atmospheric Br input is calculated as 312kmolBr (∼26tCHBr3) a-1. We estimate the global anthropogenic Br input from ballast water into the atmosphere of up to 13Mmola-1. This is 0.1% global Br input from background bromoform emissions and thus probably not relevant for stratospheric ozone depletion.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-04-06
    Description: It is an open question how localized elevated emissions of bromoform (CHBr3) and other very short-lived halocarbons (VSLHs), found in coastal and upwelling regions, and low background emissions, typically found over the open ocean, impact the atmospheric VSLH distribution. In this study, we use the Lagrangian dispersion model FLEXPART to simulate atmospheric CHBr3 resulting from assumed uniform background emissions, and from elevated emissions consistent with those derived during three tropical cruise campaigns. The simulations demonstrate that the atmospheric CHBr3 distributions in the uniform background emissions scenario are highly variable with high mixing ratios appearing in regions of convergence or low wind speed. This relation holds on regional and global scales. The impact of localized elevated emissions on the atmospheric CHBr3 distribution varies significantly from campaign to campaign. The estimated impact depends on the strength of the emissions and the meteorological conditions. In the open waters of the western Pacific and Indian oceans, localized elevated emissions only slightly increase the background concentrations of atmospheric CHBr3, even when 1∘ wide source regions along the cruise tracks are assumed. Near the coast, elevated emissions, including hot spots up to 100 times larger than the uniform background emissions, can be strong enough to be distinguished from the atmospheric background. However, it is not necessarily the highest hot spot emission that produces the largest enhancement, since the tug-of-war between fast advective transport and local accumulation at the time of emission is also important. Our results demonstrate that transport variations in the atmosphere itself are sufficient to produce highly variable VSLH distributions, and elevated VSLHs in the atmosphere do not always reflect a strong localized source. Localized elevated emissions can be obliterated by the highly variable atmospheric background, even if they are orders of magnitude larger than the average open ocean emissions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-04-06
    Description: Oceanic emissions of the climate-relevant trace gases carbonyl sulfide (OCS) and carbon disulfide (CS2) are a major source to their atmospheric budget. Their current and future emission estimates are still uncertain due to incomplete process understanding and therefore inexact quantification across different biogeochemical regimes. Here we present the first concurrent measurements of both gases together with related fractions of the dissolved organic matter (DOM) pool, i.e., solid-phase extractable dissolved organic sulfur (DOSSPE, n=24, 0.16±0.04 µmol L−1), chromophoric (CDOM, n=76, 0.152±0.03), and fluorescent dissolved organic matter (FDOM, n=35), from the Peruvian upwelling region (Guayaquil, Ecuador to Antofagasta, Chile, October 2015). OCS was measured continuously with an equilibrator connected to an off-axis integrated cavity output spectrometer at the surface (29.8±19.8 pmol L−1) and at four profiles ranging down to 136 m. CS2 was measured at the surface (n=143, 17.8±9.0 pmol L−1) and below, ranging down to 1000 m (24 profiles). These observations were used to estimate in situ production rates and identify their drivers. We find different limiting factors of marine photoproduction: while OCS production is limited by the humic-like DOM fraction that can act as a photosensitizer, high CS2 production coincides with high DOSSPE concentration. Quantifying OCS photoproduction using a specific humic-like FDOM component as proxy, together with an updated parameterization for dark production, improves agreement with observations in a 1-D biogeochemical model. Our results will help to better predict oceanic concentrations and emissions of both gases on regional and, potentially, global scales.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-20
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...