GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (15)
  • 2014  (15)
Document type
Keywords
Years
  • 2010-2014  (15)
Year
  • 1
    Publication Date: 2024-02-27
    Keywords: Calculated; CTD, Seabird; CTD, Sea-Bird SBE 911plus; CTD-R; CTD-yoyo; Date/Time of event; Density, sigma-theta (0); DEPTH, water; Elevation of event; Event label; Latitude of event; Longitude of event; Maria S. Merian; MSM09/1; MSM09/1_342-1; MSM09/1_343-1; MSM09/1_344-1; MSM09/1_345-1; MSM09/1_346-1; MSM09/1_347-1; MSM09/1_348-1; MSM09/1_349-1; MSM09/1_350-1; MSM09/1_351-1; MSM09/1_352-1; MSM09/1_353-1; MSM09/1_354-1; MSM09/1_355-1; MSM09/1_356-1; MSM09/1_357-1; MSM09/1_358-1; MSM09/1_359-1; MSM09/1_360-1; MSM09/1_362-1; MSM09/1_363-1; MSM09/1_364-1; MSM09/1_365-1; MSM09/1_365-2; MSM09/1_366-1; MSM09/1_366-2; MSM09/1_367-1; MSM09/1_368-1; MSM09/1_369-1; MSM09/1_370-1; MSM09/1_371-1; MSM09/1_372-1; MSM09/1_373-1; MSM09/1_376-1; MSM09/1_377-1; MSM09/1_378-1; MSM09/1_380-1; MSM09/1_381-1; MSM09/1_382-1; MSM09/1_383-1; MSM09/1_384-1; MSM09/1_385-1; MSM09/1_386-1; MSM09/1_387-1; MSM09/1_388-1; MSM09/1_389-1; MSM09/1_390-1; MSM09/1_391-1; MSM09/1_392-1; MSM09/1_393-1; MSM09/1_394-1; MSM09/1_395-1; MSM09/1_396-1; MSM09/1_397-1; MSM09/1_401-1; MSM09/1_401-10; MSM09/1_401-11; MSM09/1_401-12; MSM09/1_401-2; MSM09/1_401-3; MSM09/1_401-4; MSM09/1_401-5; MSM09/1_401-6; MSM09/1_401-7; MSM09/1_401-8; MSM09/1_401-9; MSM09/1_402-1; MSM09/1_402-2; MSM09/1_402-3; MSM09/1_402-4; MSM09/1_402-5; MSM09/1_403-1; MSM09/1_404-1; MSM09/1_405-1; MSM09/1_406-1; MSM09/1_407-1; MSM09/1_408-1; MSM09/1_409-1; MSM09/1_410-1; MSM09/1_411-1; MSM09/1_412-1; MSM09/1_413-1; MSM09/1_414-1; Pressure, water; Salinity; South Atlantic Ocean; Temperature, water; Temperature, water, potential; Yoyo-CTD
    Type: Dataset
    Format: text/tab-separated-values, 1348730 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Understanding the causes of the observed expansion of tropical ocean's oxygen minimum zones (OMZs) is hampered by large biases in the representation of oxygen distribution in climate models, pointing to incorrectly represented mechanisms. Here we assess the oxygen budget in a global biogeochemical circulation model, focusing on the Atlantic Ocean. While a coarse (0.5°) configuration displays the common bias of too large and too intense OMZs, the oxygen concentration in an eddying (0.1°) configuration is higher and closer to observations. This improvement is traced to a stronger oxygen supply by a more realistic representation of the equatorial and off-equatorial undercurrents, outweighing the concurrent increase in oxygen consumption associated with the stronger nutrient supply. The sensitivity of the eastern tropical Atlantic oxygen budget to the equatorial current intensity suggests that temporal changes in the eastward oxygen transport from the well-oxygenated western boundary region might partly explain variations in the OMZs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 41 (11). pp. 3972-3978.
    Publication Date: 2019-09-23
    Description: The abyssal warming around Antarctica is one of the most prominent multidecadal signals of change in the global ocean. Here we investigate its dynamical impacts on the Atlantic Meridional Overturning Circulation (AMOC) by performing a set of experiments with the ocean-sea ice model NEMO-LIM2 at 1/2 degrees horizontal resolution. The simulations suggest that the ongoing warming of Antarctic Bottom Water (AABW), already affecting much of the Southern Hemisphere with a rate of up to 0.05 degrees C decade(-1), has important implications for the large-scale meridional overturning circulation in the Atlantic Ocean. While the abyssal northward flow of AABW is weakening, we find the upper AMOC cell to progressively strengthen by 5-10% in response to deep density changes in the South Atlantic. The simulations suggest that the AABW-induced strengthening of the AMOC is already extending into the subtropical North Atlantic, implying that the process may counteract the projected decrease of the AMOC in the next decades.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 119 (9). pp. 6221-6237.
    Publication Date: 2019-09-23
    Description: Previous studies have shown that ENSO's anomalous equatorial winds, including the observed southward shift of zonal winds that occurs around the event peak, can be reconstructed with the first two Empirical Orthogonal Functions (EOFs) of equatorial region wind stresses. Using a high-resolution ocean general circulation model, we investigate the effect of these two EOFs on changes in warm water volume (WWV), interhemispheric mass transports, and Indonesian Throughflow (ITF). Wind stress anomalies associated with the first EOF produce changes in WWV that are dynamically consistent with the conceptual recharge oscillator paradigm. The ITF is found to heavily damp these WWV changes, reducing their variance by half. Wind stress anomalies associated with the second EOF, which depicts the southward wind shift, are responsible for WWV changes that are of comparable magnitude to those driven by the first mode. The southward wind shift is also responsible for the majority of the observed interhemispheric upper ocean mass exchanges. These winds transfer mass between the Northern and the Southern Hemisphere during El Niño events. Whilst water is transferred in the opposite direction during La Niña events, the magnitude of this exchange is roughly half of that seen during El Niño events. Thus, the discharging of WWV during El Niño events is meridionally asymmetric, while the WWV recharging during a La Niña event is largely symmetric. The inclusion of the southward wind shift is also shown to allow ENSO to exchange mass with much higher latitudes than that allowed by the first EOF alone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-05-07
    Description: Highlights: • We combine high-resolution ocean models with population genetics • Variation in wind-driven ocean currents mediates the collapse of A. anguilla • Female eels are philopatric within the Sargasso Sea, while males maintain gene flow • We present first evidence of the role of ocean currents in shaping species’ evolution Summary: Worldwide, exploited marine fish stocks are under threat of collapse [1]. Although the drivers behind such collapses are diverse, it is becoming evident that failure to consider evolutionary processes in fisheries management can have drastic consequences on a species’ long-term viability [2]. The European eel (Anguilla anguilla; Linnaeus, 1758) is no exception: not only does the steep decline in recruitment observed in the 1980s [ 3 and 4] remain largely unexplained, the punctual detection of genetic structure also raises questions regarding the existence of a single panmictic population [ 5, 6 and 7]. With its extended Transatlantic dispersal, pinpointing the role of ocean dynamics is crucial to understand both the population structure and the widespread decline of this species. Hence, we combined dispersal simulations using a half century of high-resolution ocean model data with population genetics tools. We show that regional atmospherically driven ocean current variations in the Sargasso Sea were the major driver of the onset of the sharp decline in eel recruitment in the beginning of the 1980s. The simulations combined with genotyping of natural coastal eel populations furthermore suggest that unexpected evidence of coastal genetic differentiation is consistent with cryptic female philopatric behavior within the Sargasso Sea. Such results demonstrate the key constraint of the variable oceanic environment on the European eel population.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Highlights: • Phase II of the Coordinated Ocean-ice Reference Experiments (CORE-II) is introduced. • Solutions from CORE-II simulations from eighteen participating models are presented. • Mean states in the North Atlantic with a focus on AMOC are examined. • The North Atlantic solutions differ substantially among the models. • Many factors, including parameterization choices, contribute to these differences. Simulation characteristics from eighteen global ocean–sea-ice coupled models are presented with a focus on the mean Atlantic meridional overturning circulation (AMOC) and other related fields in the North Atlantic. These experiments use inter-annually varying atmospheric forcing data sets for the 60-year period from 1948 to 2007 and are performed as contributions to the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II). The protocol for conducting such CORE-II experiments is summarized. Despite using the same atmospheric forcing, the solutions show significant differences. As most models also differ from available observations, biases in the Labrador Sea region in upper-ocean potential temperature and salinity distributions, mixed layer depths, and sea-ice cover are identified as contributors to differences in AMOC. These differences in the solutions do not suggest an obvious grouping of the models based on their ocean model lineage, their vertical coordinate representations, or surface salinity restoring strengths. Thus, the solution differences among the models are attributed primarily to use of different subgrid scale parameterizations and parameter choices as well as to differences in vertical and horizontal grid resolutions in the ocean models. Use of a wide variety of sea-ice models with diverse snow and sea-ice albedo treatments also contributes to these differences. Based on the diagnostics considered, the majority of the models appear suitable for use in studies involving the North Atlantic, but some models require dedicated development effort.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: Highlights: • Global mean sea level simulated in interannual CORE simulations. • Regional sea level patterns simulated in interannual CORE simulations. • Theoretical foundation for analysis of global mean sea level and regional patterns. Abstract: We provide an assessment of sea level simulated in a suite of global ocean-sea ice models using the interannual CORE atmospheric state to determine surface ocean boundary buoyancy and momentum fluxes. These CORE-II simulations are compared amongst themselves as well as to observation-based estimates. We focus on the final 15 years of the simulations (1993–2007), as this is a period where the CORE-II atmospheric state is well sampled, and it allows us to compare sea level related fields to both satellite and in situ analyses. The ensemble mean of the CORE-II simulations broadly agree with various global and regional observation-based analyses during this period, though with the global mean thermosteric sea level rise biased low relative to observation-based analyses. The simulations reveal a positive trend in dynamic sea level in the west Pacific and negative trend in the east, with this trend arising from wind shifts and regional changes in upper 700 m ocean heat content. The models also exhibit a thermosteric sea level rise in the subpolar North Atlantic associated with a transition around 1995/1996 of the North Atlantic Oscillation to its negative phase, and the advection of warm subtropical waters into the subpolar gyre. Sea level trends are predominantly associated with steric trends, with thermosteric effects generally far larger than halosteric effects, except in the Arctic and North Atlantic. There is a general anti-correlation between thermosteric and halosteric effects for much of the World Ocean, associated with density compensated changes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: The upper ocean circulation of the Pacific and Indian Oceans is connected through both the Indonesian Throughflow north of Australia and the Tasman leakage around its south. The relative importance of these two pathways is examined using virtual Lagrangian particles in a high-resolution nested ocean model. The unprecedented combination of a long integration time within an eddy-permitting ocean model simulation allows the first assessment of the interannual variability of these pathways in a realistic setting. The mean Indonesian Throughflow, as diagnosed by the particles, is 14.3 Sv, considerably higher than the diagnosed average Tasman leakage of 4.2 Sv. The time series of Indonesian Throughflow agrees well with the Eulerian transport through the major Indonesian Passages, validating the Lagrangian approach using transport-tagged particles. While the Indonesian Throughflow is mainly associated with upper ocean pathways, the Tasman leakage is concentrated in the 400–900 m depth range at subtropical latitudes. Over the effective period considered (1968–1994), no apparent relationship is found between the Tasman leakage and Indonesian Throughflow. However, the Indonesian Throughflow transport correlates with ENSO. During strong La Niñas, more water of Southern Hemisphere origin flows through Makassar, Moluccas, Ombai, and Timor Straits, but less through Moluccas Strait. In general, each strait responds differently to ENSO, highlighting the complex nature of the ENSO-ITF interaction.
    Type: Article , PeerReviewed
    Format: text
    Format: video
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 119 (11). pp. 7772-7793.
    Publication Date: 2019-09-23
    Description: The southwestern part of the subpolar North Atlantic east of the Grand Banks of Newfoundland and Flemish Cap is a crucial area for the Atlantic Meridional Overturning Circulation. Here the exchange between subpolar and subtropical gyre takes place, southward flowing cold and fresh water is replaced by northward flowing warm and salty water within the North Atlantic Current (NAC). As part of a long-term experiment, the circulation east of Flemish Cap has been studied by seven repeat hydrographic sections along 47 degrees N (2003-2011), a 2 year time series of current velocities at the continental slope (2009-2011), 19 years of sea surface height, and 47 years of output from an eddy resolving ocean circulation model. The structure of the flow field in the measurements and the model shows a deep reaching NAC with adjacent recirculation and two distinct cores of southward flow in the Deep Western Boundary Current (DWBC): one core above the continental slope with maximum velocities at mid-depth and the second farther east with bottom-intensified velocities. The western core of the DWBC is rather stable, while the offshore core shows high temporal variability that in the model is correlated with the NAC strength. About 30 Sv of deep water flow southward below a density of sigma=27.68 kg m(-3) in the DWBC. The NAC transports about 110 Sv northward, approximately 15 Sv originating from the DWBC, and 75 Sv recirculating locally east of the NAC, leaving 20 Sv to be supplied by the NAC from the south.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  [Poster] In: EGU General Assembly 2014, 27.04.-02.05.2014, Vienna, Austria .
    Publication Date: 2014-12-09
    Description: Representing correctly the distribution of biogeochemical tracers in the interior ocean, such as oxygen or phosphate, is hampered by large biases in the representation of circulation in the coarse resolution models. Here we assess the oxygen and phosphate budget in two configurations of a coupled circulation biogeochemical model (NEMO - NPZD), focusing on the Atlantic Ocean. These two configurations have been integrated using realistic atmospheric forcings for the period 1948-2007. While a coarse (0.5°) configuration displays the common bias of too low oxygen associated with too high phosphate concentration, particularly at intermediate depth in the eastern side of the basin, the values are closer to the observations in an eddying (0.1°) configuration. The improvement in the representation of oxygen and phosphate is traced to a stronger transport by a more realistic representation of the equatorial and off-equatorial undercurrents. The biogeochemical fluxes are less sensitive to the current strength as the phytoplankton growth is mainly limited by the available light in the two configurations. This study emphasizes the need of high resolution models to tackle coupled biogeochemical problematics, such as the extension of oxygen minimum zones or variability in the eastern boundary upwelling system productivity.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...