GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (8)
  • 2010-2014  (8)
  • 2012  (8)
Document type
Years
  • 2010-2014  (8)
Year
  • 1
    Publication Date: 2019-09-23
    Description: Phytoplankton experience strong and abrupt variations in light intensity. How cells cope with these changes influences their competitiveness in a highly dynamical environment. While a considerable amount of work has focused on photoacclimation, it is still unknown whether processes specific of phytoplankton groups (e.g. calcification and silicification) influence their response to changing light. Here we show that the diatom Phaeodactylum tricornutum and the coccolithophore Emiliania huxleyi respond to an abrupt increase in irradiance by increasing carbon fixation rates, decreasing light absorption through the decrease of light-harvesting pigments and increasing energy dissipation through the xanthophyll cycle. In addition, E. huxleyi rapidly increases calcium carbonate precipitation in response to elevated light intensity, thereby providing an additional sink for excess energy. Differences between the 2 species also emerge with regard to the magnitude and timing of their individual responses. While E. huxleyi show a pronounced decrease in chlorophyll a and fucoxanthin cellular contents following increased light intensity, P. tricornutum has a faster increase in diadinoxanthin quota, a slower decrease in Fv/Fm (ratio of variable to maximum fluorescence) and a stronger increase in organic carbon fixation rate during the first 10 min. Our findings provide further evidence of species-specific responses to abrupt changes in light intensity, which may partly depend on the phytoplankton functional groups, with coccolithophores having a supplementary path (calcification) for the rapid dissipation of excess energy produced after an abrupt increase in light intensity. These differences might influence competition between coexisting species and may therefore have consequences at the community level.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Increasing concentrations of atmospheric carbon dioxide are projected to lead to an increase in sea surface temperatures, potentially impacting marine ecosystems and biogeochemical cycling. Here we conducted an indoor mesocosm experiment with a natural plankton community taken from the Baltic Sea in summer. We induced a plankton bloom via nutrient addition and followed the dynamics of the different carbon and nitrogen pools for a period of one month at temperatures ranging from 9.5 °C to 17.5 °C, representing a range of ± 4 °C relative to ambient temperature. The uptake of dissolved inorganic carbon (DIC) and the net build-up of both particulate (POC) and dissolved organic carbon (DOC) were all enhanced at higher temperatures and almost doubled over a temperature gradient of 8 °C. Furthermore, elemental ratios of carbon and nitrogen (C:N) in both particulate and dissolved organic matter increased in response to higher temperatures, both reaching very high C:N ratios of 〉30 at +4 °C. Altogether, these observations suggest a pronounced increase in excess carbon fixation in response to elevated temperatures. Most of these findings are contrary to results from similar experiments conducted with plankton populations sampled in spring, revealing large uncertainties in our knowledge of temperature sensitivities of key processes in marine carbon cycling. Since a major difference to previous mesocosm experiments was the dominant phytoplankton species, we hypothesize that species composition might play an important role in the response of biogeochemical cycling to increasing temperatures.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-29
    Description: The flux of organic particles below the mixed layer is one major pathway of carbon from the surface into the deep ocean. The magnitude of this export flux depends on two major processes—remineralization rates and sinking velocities. Here, we present an efficient method to measure sinking velocities of particles in the size range from approximately 3–400 μm by means of video microscopy (FlowCAM®). The method allows rapid measurement and automated analysis of mixed samples and was tested with polystyrene beads, different phytoplankton species, and sediment trap material. Sinking velocities of polystyrene beads were close to theoretical values calculated from Stokes’ Law. Sinking velocities of the investigated phytoplankton species were in reasonable agreement with published literature values and sinking velocities of material collected in sediment trap increased with particle size. Temperature had a strong effect on sinking velocities due to its influence on seawater viscosity and density. An increase in 9 °C led to a measured increase in sinking velocities of ~40 %. According to this temperature effect, an average temperature increase in 2 °C as projected for the sea surface by the end of this century could increase sinking velocities by about 6 % which might have feedbacks on carbon export into the deep ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  [Talk] In: Why do coccolithophores calcify?, 13.-14.09.2012, Bristol, UK .
    Publication Date: 2012-12-04
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  [Talk] In: Ocean in a high-CO2 world III symposium, 24.-27.09.2012, Monterey, USA .
    Publication Date: 2012-12-04
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-07-28
    Description: Coccolithophore calcite refers to the plates of calcium carbonate (CaCO3) produced by the calcifying phytoplankton, coccolithophores. The empirical study of the elemental composition has a great potential in the development of paleoproxies. However, the difficulties to separate coccolithophore carbonates from organic phases hamper the investigation of coccoliths magnesium to calcium ratios (Mg/Ca) in biogeochemical studies. Magnesium (Mg) is found in organic molecules in the cells at concentrations up to 400 times higher than in inorganically precipitated calcite in present-day seawater. The aim of this study was to optimize a reliable procedure for organic Mg removal from coccolithophore samples to ensure reproducibility in measurements of inorganic Mg in calcite. Two baseline methods comprising organic matter oxidations with (1) bleach and (2) hydrogen peroxide (H2O2) were tested on synthetic pellets, prepared by mixing reagent grade CaCO3 with organic matter from the non-calcifying marine algae Chlorella autotrophica and measured with an ICP-AES (inductively coupled plasma-atomic emission spectrometer). Our results show that treatments with a reductive solution [using hydroxylamine-hydrochloride (NH2OH·HCl + NH4OH)] followed by three consecutive oxidations (using H2O2) yielded the best cleaning efficiencies, removing 〉99% of organic Mg in 24 h. P/Ca and Fe/Ca were used as indicators for organic contamination in the treated material. The optimized protocol was tested in dried coccolithophore pellets from batch cultures of Emiliania huxleyi, Calcidiscus leptoporus and Gephyrocapsa oceanica. Mg/Ca of treated coccolithophores were 0.151 ± 0.018, 0.220 ± 0.040, and 0.064 ± 0.023 mmol/mol, respectively. Comparison with Mg/Ca literature coccolith values, suggests a tight dependence on modern seawater Mg/Ca, which changes as a consequence of different seawater origins (〈10%). The reliable determination of Mg/Ca and Sr/Ca, and the low levels of organic contamination (Fe/Ca and P/Ca) make this protocol applicable to field and laboratory studies of trace elemental composition in coccolithophore calcite
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-12-11
    Description: Our present understanding of ocean acidification (OA) impacts on marine organisms caused by rapidly rising atmospheric carbon dioxide (CO2) concentration is almost entirely limited to single species responses. OA consequences for food web interactions are, however, still unknown. Indirect OA effects can be expected for consumers by changing the nutritional quality of their prey. We used a laboratory experiment to test potential OA effects on algal fatty acid (FA) composition and resulting copepod growth. We show that elevated CO2 significantly changed the FA concentration and composition of the diatom Thalassiosira pseudonana, which constrained growth and reproduction of the copepod Acartia tonsa. A significant decline in both total FAs (28.1 to 17.4 fg cell−1) and the ratio of long-chain polyunsaturated to saturated fatty acids (PUFA:SFA) of food algae cultured under elevated (750 µatm) compared to present day (380 µatm) pCO2 was directly translated to copepods. The proportion of total essential FAs declined almost tenfold in copepods and the contribution of saturated fatty acids (SFAs) tripled at high CO2. This rapid and reversible CO2-dependent shift in FA concentration and composition caused a decrease in both copepod somatic growth and egg production from 34 to 5 eggs female−1 day−1. Because the diatom-copepod link supports some of the most productive ecosystems in the world, our study demonstrates that OA can have far-reaching consequences for ocean food webs by changing the nutritional quality of essential macromolecules in primary producers that cascade up the food web.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  [Poster] In: 3. International Symposium on The Ocean in a high-CO2 World, 24.-27.09.2012, Monterey, USA .
    Publication Date: 2016-05-02
    Description: Zooplankton species are key players in pelagic marine ecosystems and link primary production to higher trophic levels. During a six-week mesocosm study conducted in the Raunefjord (Bergen, Norway) in May/June 2011 we investigated how the zooplankton community responds to ocean acidification. Nine mesocosms of 25 m length enclosing approx. 80 m3 of fjord water were enriched with eight different CO2 concentrations (ca 280 (x2), 390, 560, 840, 1120, 1400, 2000, 3000 atm). Temperature and chlorophyll a content in the mesocosms were measured daily. On day 14 nutrients were added to induce a phytoplankton bloom. Once a week zooplankton samples from each mesocosm were taken with an Apstein net (mesh size: 55 µm) and fixed in buffered formalin for abundance analyses. The zooplankton community was dominated by copepods (Calanus finmarchicus, Temora longicornis, Pseudocalanus elongatus, Oithona similis), followed by meroplanktonic larvae. Over the course of the experiment, the total zooplankton abundance in the water column decreased in all nine mesocosms, mainly due to decreasing copepod abundances. Only Pseudocalanus elongatus, appendicularians and medusea increased in abundance. Species composition did not change with CO2 concentration; however, some taxa (e.g. bivalves and gastropods) were less abundant in mesocosms with high CO2 levels.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...