GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (5)
  • [Kiel] : IFM-GEOMAR  (1)
  • Mineralogical Society of Great Britain & Ireland
  • 2015-2019
  • 2005-2009  (6)
  • 2009  (4)
  • 2006  (2)
Keywords
Publisher
Language
Years
  • 2015-2019
  • 2005-2009  (6)
Year
  • 1
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: Online-Ressource (14 S., 1,19 MB) , graph. Darst.
    Language: German
    Note: Förderkennzeichen BMBF 03G0196B. - [Engl. T.: SO 196 - SUMSUN: Geochemical investigation of porewaters and sediments of CO2 seeps] , Unterschiede zwischen der elektronischen Ressource und dem gedruckten Dokument können nicht ausgeschlossen werden. - Auch als gedr. Ausg. vorhanden , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  [Talk] In: Goldschmidt Conference 2009 "Challenges to Our Volatile Planet", 21.-26.06.2009, Davos, Switzerland ; A1249 .
    Publication Date: 2019-09-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-09-08
    Description: The weathering of silicate minerals exposed on the continents is the largest sink of atmospheric CO2 on time scales of millions of years. The rate of this process is positively correlated with global mean temperature and atmospheric CO2 concentration, resulting in a negative feedback that stabilizes Earths’ climate (Berner, 2004). Detrital silicates derived from the physical denudation of the continents are a major component of marine sediments (Li and Schoonmaker, 2003). However, their geochemical behaviour is poorly understood and they are considered to be unimportant to the long-term carbon cycle. We show that in organic matter-rich sediments of the Sea of Okhotsk detrital silicates undergo intense weathering. This process is likely favoured by microbial activity, which lowers pore water pH and releases dissolved humic substances, and by the freshness of detrital silicates which originate from the cold, poorly weathered Amur River basin. Numerical simulations of early diagenesis show that submarine weathering rates in our study area are comparable to average continental weathering rates (Gaillardet et al., 1999). Furthermore, silicate weathering seems to be widespread in organic matter-rich sediments of continental margins, suggesting the existence of a significant CO2 sink there. These findings imply a greater efficiency of the silicate weathering engine also at low surface temperatures, resulting in a weakening of the negative feedback between pCO2, climate evolution and silicate weathering.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-08-03
    Description: Seven sediment cores were taken in the Sea of Okhotsk in a south-north transect along the slope of Sakhalin Island. The retrieved anoxic sediments and pore fluids were analyzed for particulate organic carbon (POC), total nitrogen, total sulfur, dissolved sulfate, sulfide, methane, ammonium, iodide, bromide, calcium, and total alkalinity. A novel method was developed to derive sedimentation rates from a steady-state nitrogen mass balance. Rates of organic matter degradation, sulfate reduction, methane turnover, and carbonate precipitation were derived from the data applying a steady-state transport-reaction model. A good fit to the data set was obtained using the following new rate law for organic matter degradation in anoxic sediments: View the MathML sourceRPOC=KCC(DIC)+C(CH4)+KC·kx·POC Turn MathJax on The rate of particulate organic carbon degradation (RPOC) was found to depend on the POC concentration, an age-dependent kinetic constant (kx) and the concentration of dissolved metabolites. Rates are inhibited at high dissolved inorganic carbon (DIC) and dissolved methane (CH4) concentrations. The best fit to the data was obtained applying an inhibition constant KC of 35 ± 5 mM. The modeling further showed that bromide and iodide are preferentially released during organic matter degradation in anoxic sediments. Carbonate precipitation is driven by the anaerobic oxidation of methane (AOM) and removes one third of the carbonate alkalinity generated via AOM. The new model of organic matter degradation was further tested and extended to simulate the accumulation of gas hydrates at Blake Ridge. A good fit to the available POC, total nitrogen, dissolved ammonium, bromide, iodide and sulfate data was obtained confirming that the new model can be used to simulate organic matter degradation and methane production over the entire hydrate stability zone (HSZ). The modeling revealed that most of the gas hydrates accumulating in Blake Ridge sediments are neither formed by organic matter degradation within the HSZ nor by dissolved methane transported to the surface by upward fluid flow but rather through the ascent of gas bubbles from deeper sediment layers. The model was further applied to predict rates of hydrate accumulation in Sakhalin slope sediments. It showed that only up to 0.3% of the pore space is occupied by gas hydrates formed via organic matter degradation within the HSZ. Gas bubble ascent may, however, significantly increase the total amount of hydrate in these deposits.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Widespread mud volcanism across the thick (〈= 14 km) seismically active sedimentary prism of the Gulf of Cadiz is driven by tectonic activity along extensive strike-slip faults and thrusts associated with the accommodation of the Africa-Eurasia convergence and building of the Arc of Gibraltar, respectively. An investigation of eleven active sites located on the Moroccan Margin and in deeper waters across the wedge showed that light volatile hydrocarbon gases vented at the mud volcanoes (MVs) have distinct, mainly thermogenic, origins. Gases of higher and lower thermal maturities are mixed at Ginsburg and Mercator MVs on the Moroccan Margin, probably because high maturity gases that are trapped beneath evaporite deposits are transported upwards at the MVs and mixed with shallower, less mature, thermogenic gases during migration. At all other sites except for the westernmost Porto MV, delta C-13-CH4 and delta H-2-CH4 values of similar to -50 parts per thousand and -200 parts per thousand, respectively, suggest a common origin for methane; however, the ratio of CH4/(C2H6 + C3H8) varies from similar to 10 to > 7000 between sites. Mixing of shallow biogenic and deep thermogenic gases cannot account for the observed compositions which instead result mainly from extensive migration of thermogenic gases in the deeply-buried sediments, possibly associated with biodegradation of C2+ homologues and secondary methane production at Captain Arutyunov and Carlos Ribeiro MVs. At the deep-water Bonjardim, Olenin and Carlos Ribeiro MVs, generation of C2+-enriched gases is probably promoted by high heat flux anomalies which have been measured in the western area of the wedge. At Porto MV, gases are highly enriched in CH4 having delta C-13-CH4 similar to -50 parts per thousand, as at most sites, but markedly lower delta H-2-CH4 Values 〈 -250 parts per thousand, suggesting that it is not generated by thermal cracking of n-alkanes but rather that it has a deep Archaeal origin. The presence of petroleum-type hydrocarbons is consistent with a thermogenic origin, and at sites where CH4 is predominant support the suggestion that gases have experienced extensive transport during which they mobilized oil from sediments similar to 2-4 km deep. These fluids then migrate into shallower, thermally immature muds, driving their mobilization and extrusion at the seafloor. At Porto MV, the limited presence of petroleum in mud breccia sediments further supports the hypothesis of a predominantly deep microbial origin of CH4. (C) 2009 Elsevier B.V. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: The chemical and isotopic composition of pore fluids is presented for five deep-rooted mud volcanoes aligned on a transect across the Gulf of Cadiz continental margin at water depths between 350 and 3860 m. Generally decreasing interstitial Li concentrations and Sr-87/Sr-86 ratios with increasing distance from shore are attributed to systematically changing fluid sources across the continental margin. Although highest Li concentrations at the near-shore mud volcanoes coincide with high salinities derived from dissolution of halite and late-stage evaporites, clayey, terrigenous sediments are identified as the ultimate Li source to all pore fluids investigated. Light delta Li-7 values, partly close to those of hydrothermal vent fluids (delta Li-7: +11.9 parts per thousand), indicate that Li has been mobilized during high-temperature fluid/sediment or fluid/rock interactions in the deep sub-surface. Intense leaching of terrigenous clay has led to radiogenic Sr-87/Sr-86 ratios (similar to 0.7106) in pore fluids of the near-shore mud volcanoes. In contrast, non-radiogenic Sr-87/Sr-86 ratios (similar to 0.7075) at the distal locations are attributed to admixing of a basement-derived fluid component, carrying an isotopic signature from interaction with the basaltic crust. This inference is substantiated by temperature constraints from Li isotope equilibrium calculations suggesting exchange processes at particularly high temperatures (>200 degrees C) for the least radiogenic pore fluids of the most distal location.Advective pore fluids in the off-shore reaches of the Gulf of Cadiz are influenced by successive exchange processes with both oceanic crust and terrigenous, fine-grained sediments, resulting in a chemical and isotopic signature similar to that of fluids in near-shore ridge flank hydrothermal systems. This suggests that deep-rooted mud volcanoes in the Gulf of Cadiz represent a fluid pathway intermediate between mid-ocean ridge hydrothermal vent and shallow, marginal cold seep. Due to the thicker sediment coverage and slower fluid advection rates, the overall geochemical signature is shifted towards the sediment-diagenetic signal compared to ridge flank hydrothermal environments. (C) 2009 Elsevier Ltd. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...