GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMS (American Meteorological Society)  (10)
  • 2020-2024  (2)
  • 1990-1994  (8)
Document type
Years
Year
  • 1
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 21 . pp. 1271-1289.
    Publication Date: 2020-08-04
    Description: A high-resolution model of the wind-driven and thermohaline circulation in the North and equatorial Atlantic Ocean is used to study the structure and variability of the boundary current system at 26°N, including the Florida Current, the Antilles Current, and the Deep Western Boundary Current (DWBC). The model was developed by Bryan and Holland as a Community Modeling Effort of the World Ocean Circulation Experiment. Subsequent experiments have been performed at IfM Kiel, with different friction coefficients, and different climatologies of monthly mean wind stress: Hellerman–Rosenstein (HR) and Isemer–Hasse (IH). The southward volume transports in the upper 1000 m of the interior Atlantic, at 26°N, are 25.0 Sv (Sv ≡ 106m3s−1) for HR, and 34.9 Sv for IH forcing, in good agreement with the transport from the integrated Sverdrup balance at this latitude (23.9 Sv for HR, 35.6 Sv for IH). The return flow of this wind-driven transport, plus the southward transport of the DWBC (6–8 Sv), is partitioned between the Florida Current and Antilles Current. With HR forcing, the transport through the Straits of Florida is 23.2 Sv; this increases to 29.1 Sv when the wind stresses of IH are used. The annual variation of the simulated Florida Current is very similar to previous, coarse-resolution models when using the same wind-stress climatology (HR); the annual range (3.4 Sv) obtained with HR forcing is strongly enhanced (6.3 Sv) with IH forcing. The meridional heat transport at 26°N, zonally integrated across the basin, is in phase with the Florida Current; its annual range increases from 0.44 PW (HR) to 0.80 PW (IH). The annual signal east of the Bahamas is masked by strong transport fluctuations on a time scale of O(100 days), caused by an instability of the Antilles Current. By averaging over several model years, an annual cycle is extracted, which is in phase with the wind stress curl over the western part of the basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 24 . pp. 2306-2320.
    Publication Date: 2018-04-05
    Description: To avoid an explicit simulation of the overflows across the Greenland-Scotland ridge, many models of the large-scale ocean circulation seek to include the net effect of the inflowing dense water masses by restoring temperature and salinity near the ridge to observed conditions. In this paper the authors examine the effect of different datasets for the northern restoring condition in two versions, eddy resolving and non-eddy resolving, of the model of the North and equatorial Atlantic that has been developed in recent years as a Community Modeling Effort for WOCE. It is shown that the use of smoothed climatological fields of temperature and salinity south of the Denmark Strait leads to strong deficiencies in the simulation of the deep flow field in the basin. A switch to actual hydrographic data from the Denmark Strait ignites a rapid dynamic response throughout the North Atlantic, affecting the transport and vertical structure of the deep western boundary current and, by virtue of the JEBAR efffect, the transport of the horizontal gyres. Meridional overturning and northward heat transport too weak in the cases with climatological boundary conditions, increase to more realistic levels in the subtropical North Atlantic. The initial response to switches in the high-latitude thermohaline forcing is mediated by fast waves along the westurn boundary, leading to changes in the deep western boundary current in low latitudes after about two years in the non-eddy-resolving cast. The initial timescale depends on the horizontal grid spacing of the model; in the high-resolution case, the first signal reaches the equator in a few months. The adjustment to a new, dynamic quasi equilibrium involves Kelvin waves along the equator and Rossby wave in the interior and is attained in less than two decades throughout the North Atlantic. It is suggested that these fast dynamic adjustment processes could play an important role in possible fluctuations of the thermohaline circulation, or transitions between different equilibrium states of the coupled ocean–atmosphere system, and may have determined the timescale of the observed climatic transitions before and during the last deglaciation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 24 . pp. 326-344.
    Publication Date: 2018-04-05
    Description: Global mean and eddy fields from a four-year experiment with a 1/6° × 1/5° horizontal resolution implementation of the CME North Atlantic model are presented. The time-averaged wind-driven and thermohaline circulation in the model is compared to the results of a 1/3° × 2/5° model run in very similar configuration. In general, the higher resolution results are found to confirm that the resolution of previous CME experiments is sufficient to describe many features of the large-scale circulation and water mass distribution quite well. While the increased resolution does not lead to large changes in the mean flow patterns, the variability in the model is enhanced significantly. On the other hand, however, not all aspects of the circulation have improved with resolution. The Azores Current Frontal Zone with its variability in the eastern basin is still represented very poorly. Particular attention is also directed toward the unrealistic stationary anticyclones north of Cape Hatteras and in the Gulf of Mexico.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-04-05
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 22 . pp. 361-381.
    Publication Date: 2020-08-04
    Description: A primitive equation model of an idealized ocean basin, driven by simple, study wind and buoyancy forcing at the surface, is used to study the dynamics of mesoscale eddies. Model statistics of a six-year integration using a fine grid (1/6° × 0.2°), with reduced coefficients of horizontal friction, are compared to those using a coarser grid (1/3° × 0.4°), but otherwise identical configuration. Eddy generation in both model cases is primarily due to the release of mean potential energy by baroclinic instability. Horizontal Reynolds stresses become significant near the midlatitude jet of the fine-grid case, with a tendency for preferred energy transfers from the eddies to the mean flow. Using the finer resolution, eddy kinetic energy nearly doubles at the surface of the subtropical gyre, and increases by factors of 3–4 over the jet region and in higher latitudes. The spatial characteristics of the mesoscale fluctuations are examined by calculating zonal wavenumber spectra and velocity autocorrelation functions. With the higher resolution, the dominant eddy scale remains approximately the same in the subtropical gyre but decreases by a factor of 2 in the subpolar areas. The wavenumber spectra indicate a strong influence of the model friction in the coarse-grid case, especially in higher latitudes. Using the coarse grid, there is almost no separation between the energetic eddy scale and the scale where friction begins to dominate, leading to steep spectra beyond the cutoff wavenumber. Using the finer resolution an inertial subrange with a k−3 power law begins to emerge in all model regions outside the equatorial belt. Despite the large increase of eddy intensity in the fine-grid model, effects on the mean northward transport of heat are negligible. Strong eddy fluxes of heat across the midlatitude jet are almost exactly compensated by changes of the heat transport due to the mean flow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-04
    Description: The monthly mean wind stress climatology of Hellerman and Rosenstein (HR) is compared with the climatology of Isemer and Hasse (IH), which represents a version of the Bunker atlas (BU) for the North Atlantic based on revised parameterizations. The drag coefficients adopted by IH are 21% smaller than the values of BU and HR, and the calculation of wind speed from marine estimates of Beaufort force (Bft) is based on a revised Beaufort equivalent scale similar to the scientific scale recommended by WMO. The latter choice significantly increases wind speed below Bft 8, and effectively counteracts the reduction of the drag coefficients. Comparing the IH stresses with HR reveals substantially enhanced magnitudes in the trade wind region throughout the year. At 15°N the mean easterly stress increases from about 0.9 (HR) to about 1.2 dyn cm−1 (IH). Annual mean differences are smaller in the region of the westerlies. In winter, the effect due to the reduced drag coefficient dominates and leads to smaller stress values in IH; during summer season the revision of the Beaufort equivalents is more effective and leads to increased stresses. Implications of the different wind stress climatologies for forcing the large-scale ocean circulation are discussed by means of the Sverdrup transport streamfunction (ψs): Throughout the subtropical gyre a significant intensification of ψs takes place with IH. At 27°N, differences of more than 10 Sv (1 Sv ≡ 106 m3 s−1) are found near the western boundary. Differences in the seasonality of ψs are more pronounced in near-equatorial regions where IH increase the amplitude of the annual cycle by about 50%. An eddy-resolving model of the North Atlantic circulation is used to examine the effect of the different wind stresses on the seasonal cycle of the Florida Current. The transport predicted by the numerical model is in much better agreement with observations when the circulation is forced by IH than by HR, regarding both the annual mean (29.1 Sv vs 23.2 Sv) and the seasonal range (6.3 Sv vs 3.4 Sv).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 24 . pp. 91-107.
    Publication Date: 2020-08-04
    Description: The annual cycle of meridional heat transport in the North and equatorial Atlantic Ocean is studied by means of the high-resolution numerical model that had been developed in recent years as a Community Modeling Effort for the World Ocean Circulation Experiment. Similar to previous model studies, there is a winter maximum in northward heat transport in the equatorial Atlantic and a summer maximum in midlatitudes. The seasonal variation in heat transport in the equatorial Atlantic, with a maximum near 8°N, is associated with the out-of-phase changes in heat content to the north and south of that latitude in connection with the seasonal reversal of the North Equatorial Countercurrent. The amplitude of the heat transport variation at 8°N depends on model resolution: forcing with the monthly mean wind stresses of Hellerman–Rosenstein (HR) gives an annual range of 2.1 PW in the case of a 1/3° meridional grid, and 1.7 PW in the case of a 1° grid, compared to 1.4 PW in a previous 2° model. Forcing with the wind stresses of Isemer–Hasse (IH) gives 2.5 PW in the 1/3° and 2.2 PW in the 1° model case. The annual range of heat transport in the subtropical North Atlantic is much less dependent on resolution but sensitive to the wind stress: it increases from 0.5 PW in the case of HR forcing to almost 0.8 PW with IH forcing. The annual cycle of heat transport can be understood in terms of wind-driven variations in the meridional overturning; variations in horizontal gyre transport have only little effect both in the equatorial and in the subtropical Atlantic. In all model solutions the seasonal variations in the near-surface meridional Ekman transport are associated with deep seasonal overturning cells. The weak shear of the deep response suggests that the large variations in heat transport on seasonal and shorter time scales should be of little consequence for observational estimates of mean oceanic heat transports relying on one-time hydrographic surveys.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 22 . pp. 732-752.
    Publication Date: 2018-04-05
    Description: Characteristic of the mesoscale variability in the Atlantic Ocean are investigated by analyzing the Geosat altimeter signal between 60°S and 60°N. The rms sea-surface variability for various frequency bands is studied, including the high-frequency eddy-containing band with periods 〈150 days. Wavenumber spectra and spatial eddy characteristics are analyzed over 10° by 10° boxes covering both hemispheres of the Atlantic Ocean. A comparison, with solutions of a high-resolution numerical experiment, developed as the Community Modeling Effort of the World Ocean Circulation Experiment, aids interpretation of the Geosat results in the tropical and subtropical Atlantic and provides a test of the model fluctuating eddy field. Results from Geosat altimetry show a wavenumber dependence close to k1−5 (k1 being the alongtrack wave-number) over almost the entire Atlantic Ocean except for areas in the tropical and subtropical Atlantic where the rms variability in the eddy-containing band is less than 5 cm, that is, not significantly different from the altimeter noise level. Characteristic eddy length scales inferred from Geosat data are linearly related with the deformation radius of the first baroclinic mode over the whole Atlantic Ocean, except for the equatorial regime (10°S to 10°N). The data-model comparison indicates that the high-resolution model with horizontal grid size of ⅓° and ° in latitude and longitude is quite capable of simulating observed eddy characteristics in the tropics and subtropics. In mid- and high latitudes, however, the model fails to simulate the pronounced poleward decrease in eddy scales. This leads to systematic discrepancies between the model and Geosat observation, with model scales being up to 50% larger than deduced from altimetry.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Marine heatwaves along the coast ofWestern Australia, referred to as Ningaloo Niño, have had dramatic impacts on the ecosystem in the recent decade. A number of local and remote forcing mechanisms have been put forward, however little is known about the depth structure of such temperature extremes. Utilizing an eddy-active global Ocean General Circulation Model, Ningaloo Niño and the corresponding cold Ningaloo Niña events are investigated between 1958-2016, with focus on their depth structure. The relative roles of buoyancy and wind forcing are inferred from sensitivity experiments. Composites reveal a strong symmetry between cold and warm events in their vertical structure and associated large-scale spatial patterns. Temperature anomalies are largest at the surface, where buoyancy forcing is dominant and extend down to 300m depth (or deeper), with wind forcing being the main driver. Large-scale subsurface anomalies arise from a vertical modulation of the thermocline, extending from the western Pacific into the tropical eastern Indian Ocean. The strongest Ningaloo Niños in 2000 and 2011 are unprecedented compound events, where long-lasting high temperatures are accompanied by extreme freshening, which emerges in association with La Niñas, more common and persistent during the negative phase of the Interdecadal Pacific Oscillation. It is shown that Ningaloo Niños during La Nina phases have a distinctively deeper reach and are associated with a strengthening of the Leeuwin Current, while events during El Niño are limited to the surface layer temperatures, likely driven by local atmosphere-ocean feedbacks, without a clear imprint on salinity and velocity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Enhanced Southern Ocean ventilation in recent decades has been suggested to be a relevant modulator of the observed changes in ocean heat and carbon uptake. This study focuses on the Southern Ocean midlatitude ventilation changes from the 1960s to the 2010s. A global 1/4° configuration of the NEMO–Louvain-la-Neuve sea ice model, version 2 (LIM2), including the inert tracer CFC-12 (a proxy of ocean ventilation) is forced with the CORE, phase II (CORE-II), and JRA-55 driving ocean (JRA55-do) atmospheric reanalyses. Sensitivity experiments, where the variability of wind stress and/or the buoyancy forcing is suppressed on interannual time scales, are used to unravel the mechanisms driving ventilation changes. Ventilation changes are estimated by comparing CFC-12 interior inventories among the different experiments. All simulations suggest a multidecadal fluctuation of Southern Ocean ventilation, with a decrease until the 1980s–90s and a subsequent increase. This evolution is related to the atmospheric forcing and is caused by the (often counteracting) effects of wind stress and buoyancy forcing. Until the 1980s, increased buoyancy gains caused the ventilation decrease, whereas the subsequent ventilation increase was driven by strengthened wind stress causing deeper mixed layers and a stronger meridional overturning circulation. Wind stress emerges as the main driver of ventilation changes, even though buoyancy forcing modulates its trend and decadal variability. The three Southern Ocean basins take up CFC-12 in distinct density intervals but overall respond similarly to the atmospheric forcing. This study suggests that Southern Ocean ventilation is expected to increase as long as the effect of increasing Southern Hemisphere wind stress overwhelms that of increased stratification.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...