GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Song, Qingtao  (2)
  • Physics  (2)
Material
Person/Organisation
Language
Years
Subjects(RVK)
  • Physics  (2)
RVK
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Journal of Climate Vol. 22, No. 1 ( 2009-01-01), p. 146-164
    In: Journal of Climate, American Meteorological Society, Vol. 22, No. 1 ( 2009-01-01), p. 146-164
    Abstract: This study evaluates the impacts of sea surface temperature (SST) specification and grid resolution on numerical simulations of air–sea coupling near oceanic fronts through analyses of surface winds from the European Centre for Medium-Range Weather Forecasts (ECMWF) model. The 9 May 2001 change of the boundary condition from the Reynolds SST analyses to the NOAA Real-Time Global (RTG) SST in the ECMWF model resulted in an abrupt increase in mesoscale variance of the model surface winds over the ocean. In contrast, the 21 November 2000 change of the grid resolution resulted in an abrupt increase in mesoscale variability of surface winds over mountainous regions on land but had no significant effect on winds over the ocean. To further investigate model sensitivity to the SST boundary condition and grid resolution, a series of simulations were made with the Weather Research and Forecasting (WRF) model over a domain encompassing the Agulhas return current (ARC: also called “retroflection”) region in the south Indian Ocean. Results from three WRF simulations with SST measured by the Advanced Microwave Scanning Radiometer on the Earth Observing System Aqua satellite (AMSR-E) and the Reynolds and RTG SST analyses indicate the vital importance of the resolution of the SST boundary condition for accurate simulation of the air–sea coupling between SST and surface wind speed. WRF simulations with grid spacings of 40 and 25 km show that the latter increased energy only on scales shorter than 250 km. In contrast, improved resolution of SST significantly increased the mesoscale variability for scales up to 1000 km. Further sensitivity studies with the WRF model conclude that the weak coupling of surface wind speeds from the ECMWF model to SST is likely attributable primarily to the weak response of vertical turbulent mixing to SST-induced stability in the parameterization of boundary layer turbulence, with an overestimation of vertical diffusion by about 60% on average in stable conditions and an underestimation by about 40% in unstable conditions.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2017
    In:  Journal of Climate Vol. 30, No. 1 ( 2017-01), p. 91-107
    In: Journal of Climate, American Meteorological Society, Vol. 30, No. 1 ( 2017-01), p. 91-107
    Abstract: This study presents an assessment of the impact of a March 2006 change in the Met Office operational global numerical weather prediction model through the introduction of a nonlocal momentum mixing scheme. From comparisons with satellite observations of surface wind speed and sea surface temperature (SST), it is concluded that the new parameterization had a relatively minor impact on SST-induced changes in sea surface wind speed in the Met Office model in the September and October 2007 monthly averages over the Agulhas Return Current region considered here. The performance of the new parameterization of vertical mixing was evaluated near the surface layer and further through comparisons with results obtained using a wide range of sensitivity of mixing parameterization to stability in the Weather Research and Forecasting (WRF) Model, which is easily adapted to such sensitivity studies. While the new parameterization of vertical mixing improves the Met Office model response to SST in highly unstable (convective) conditions, it is concluded that significantly enhanced vertical mixing in the neutral to moderately unstable conditions (nondimensional stability [Formula: see text] between 0 and −2) typically found over the ocean is required in order for the model surface wind response to SST to match the satellite observations. Likewise, the reduced mixing in stable conditions in the new parameterization is also relatively small; for the range of the gradient Richardson number typically found over the ocean, the mixing was reduced by a maximum of only 10%, which is too small by more than an order of magnitude to be consistent with the satellite observations.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...