GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chelton, Dudley B.  (3)
  • 2005-2009  (3)
Material
Person/Organisation
Language
Years
  • 2005-2009  (3)
Year
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2005
    In:  Journal of Climate Vol. 18, No. 14 ( 2005-07-15), p. 2706-2723
    In: Journal of Climate, American Meteorological Society, Vol. 18, No. 14 ( 2005-07-15), p. 2706-2723
    Abstract: The marine atmospheric boundary layer (MABL) response to sea surface temperature (SST) perturbations with wavelengths shorter than 30° longitude by 10° latitude along the Agulhas Return Current (ARC) is described from the first year of SST and cloud liquid water (CLW) measurements from the Advanced Microwave Scanning Radiometer (AMSR) on the Earth Observing System (EOS) Aqua satellite and surface wind stress measurements from the QuikSCAT scatterometer. AMSR measurements of SST at a resolution of 58 km considerably improves upon a previous analysis that used the Reynolds SST analyses, which underestimate the short-scale SST gradient magnitude over the ARC region by more than a factor of 5. The AMSR SST data thus provide the first quantitatively accurate depiction of the SST-induced MABL response along the ARC. Warm (cold) SST perturbations produce positive (negative) wind stress magnitude perturbations, leading to short-scale perturbations in the wind stress curl and divergence fields that are linearly related to the crosswind and downwind components of the SST gradient, respectively. The magnitudes of the curl and divergence responses vary seasonally and spatially with a response nearly twice as strong during the winter than during the summer along a zonal band between 40° and 50°S. These seasonal variations closely correspond to seasonal and spatial variability of large-scale MABL stability and surface sensible heat flux estimated from NCEP reanalysis fields. SST-induced deepening of the MABL over warm water is evident in AMSR measurements of CLW. Typical annual mean differences in cloud thickness between cold and warm SST perturbations are estimated to be about 300 m.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2005
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Journal of Climate Vol. 22, No. 1 ( 2009-01-01), p. 146-164
    In: Journal of Climate, American Meteorological Society, Vol. 22, No. 1 ( 2009-01-01), p. 146-164
    Abstract: This study evaluates the impacts of sea surface temperature (SST) specification and grid resolution on numerical simulations of air–sea coupling near oceanic fronts through analyses of surface winds from the European Centre for Medium-Range Weather Forecasts (ECMWF) model. The 9 May 2001 change of the boundary condition from the Reynolds SST analyses to the NOAA Real-Time Global (RTG) SST in the ECMWF model resulted in an abrupt increase in mesoscale variance of the model surface winds over the ocean. In contrast, the 21 November 2000 change of the grid resolution resulted in an abrupt increase in mesoscale variability of surface winds over mountainous regions on land but had no significant effect on winds over the ocean. To further investigate model sensitivity to the SST boundary condition and grid resolution, a series of simulations were made with the Weather Research and Forecasting (WRF) model over a domain encompassing the Agulhas return current (ARC: also called “retroflection”) region in the south Indian Ocean. Results from three WRF simulations with SST measured by the Advanced Microwave Scanning Radiometer on the Earth Observing System Aqua satellite (AMSR-E) and the Reynolds and RTG SST analyses indicate the vital importance of the resolution of the SST boundary condition for accurate simulation of the air–sea coupling between SST and surface wind speed. WRF simulations with grid spacings of 40 and 25 km show that the latter increased energy only on scales shorter than 250 km. In contrast, improved resolution of SST significantly increased the mesoscale variability for scales up to 1000 km. Further sensitivity studies with the WRF model conclude that the weak coupling of surface wind speeds from the ECMWF model to SST is likely attributable primarily to the weak response of vertical turbulent mixing to SST-induced stability in the parameterization of boundary layer turbulence, with an overestimation of vertical diffusion by about 60% on average in stable conditions and an underestimation by about 40% in unstable conditions.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2008
    In:  Journal of Climate Vol. 21, No. 17 ( 2008-09-01), p. 4149-4167
    In: Journal of Climate, American Meteorological Society, Vol. 21, No. 17 ( 2008-09-01), p. 4149-4167
    Abstract: Boreal summer intraseasonal (30–90-day time scale) sea surface temperature (SST) variability in the east Pacific warm pool is examined using Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) sea surface temperatures during 1998–2005. Intraseasonal SST variance maximizes at two locations in the warm pool: in the vicinity of 9°N, 92°W near the Costa Rica Dome and near the northern edge of the warm pool in the vicinity of 19°N, 108°W. Both locations exhibit a significant spectral peak at 50–60-day periods, time scales characteristic of the Madden–Julian oscillation (MJO). Complex empirical orthogonal function (CEOF) and spectra coherence analyses are used to show that boreal summer intraseasonal SST anomalies are coherent with precipitation anomalies across the east Pacific warm pool. Spatial variations of phase are modest across the warm pool, although evidence exists for the northward progression of intraseasonal SST and precipitation anomalies. Intraseasonal SSTs at the north edge of the warm pool lag those in the vicinity of the Costa Rica Dome by about 1 week. The MJO explains 30%–40% of the variance of intraseasonal SST anomalies in the east Pacific warm pool during boreal summer. Peak-to-peak SST variations of 0.8°–1.0°C occur during MJO events. SST is approximately in quadrature with MJO precipitation, with suppressed (enhanced) MJO precipitation anomalies leading positive (negative) SST anomalies by 7–10 days. Consistent with the CEOF and coherence analyses, MJO-related SST and precipitation anomalies near the Costa Rica Dome lead those at the northern edge of the warm pool by about 1 week.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2008
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...