GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (5)
Document type
Language
  • English  (5)
Years
  • 1
    Publication Date: 2020-02-12
    Description: The transition between seismic rupture and aseismic creep is of central interest to better understand the mechanics of subduction processes. A Mw 8.2 earthquake occurred on April 1st, 2014 in the Iquique seismic gap of northern Chile. This event was preceded by a long foreshock sequence including a 2-week-long migration of seismicity initiated by a Mw 6.7 earthquake. Repeating earthquakes were found among the foreshock sequence that migrated towards the mainshock hypocenter, suggesting a large-scale slow-slip event on the megathrust preceding the mainshock. The variations of the recurrence times of the repeating earthquakes highlight the diverse seismic and aseismic slip behaviors on different megathrust segments. The repeaters that were active only before the mainshock recurred more often and were distributed in areas of substantial coseismic slip, while repeaters that occurred both before and after the mainshock were in the area complementary to the mainshock rupture. The spatiotemporal distribution of the repeating earthquakes illustrates the essential role of propagating aseismic slip leading up to the mainshock and illuminates the distribution of postseismic afterslip. Various finite fault models indicate that the largest coseismic slip generally occurred down-dip from the foreshock activity and the mainshock hypocenter. Source imaging by teleseismic back-projection indicates an initial down-dip propagation stage followed by a rupture-expansion stage. In the first stage, the finite fault models show an emergent onset of moment rate at low frequency (〈0.1Hz), while back-projection shows a steady increase of high frequency power (〉0.5Hz). This indicates frequency-dependent manifestations of seismic radiation in the low-stress foreshock region. In the second stage, the rupture expands in rich bursts along the rim of a semi-elliptical region with episodes of re-ruptures, suggesting delayed failure of asperities. The high-frequency rupture remains within an area of local high trench-parallel gravity anomaly (TPGA), suggesting the presence of subducting seamounts that promote high-frequency generation. Our results highlight the complexity of the interactions between large-scale aseismic slow-slip and dynamic ruptures of megathrust earthquakes.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-08-25
    Description: Satellite altimetry and tide gauges are the two main techniques used to measure sea level. Due to the limitations of satellite altimetry, a high-quality unified sea level model from coast to open ocean has traditionally been difficult to achieve. This study proposes a fusion approach of altimetry and tide gauge data based on a deep belief network (DBN) method. Taking the Mediterranean Sea as the case study area, a progressive three-step experiment was designed to compare the fused sea level anomalies from the DBN method with those from the inverse distance weighted (IDW) method, the kriging (KRG) method and the curvature continuous splines in tension (CCS) method for different cases. The results show that the fusion precision varies with the methods and the input measurements. The precision of the DBN method is better than that of the other three methods in most schemes and is reduced by approximately 20% when the limited altimetry along-track data and in-situ tide gauge data are used. In addition, the distribution of satellite altimetry data and tide gauge data has a large effect on the other three methods but less impact on the DBN model. Furthermore, the sea level anomalies in the Mediterranean Sea with a spatial resolution of 0.25° × 0.25° generated by the DBN model contain more spatial distribution information than others, which means the DBN can be applied as a more feasible and robust way to fuse these two kinds of sea levels.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-07-03
    Description: The Taiwan Milun fault zone located at the boundary between the Eurasian and Philippine Sea plates. This fault slips frequently and produced large earthquakes, as for example the Mw6.4 Hualien earthquake (6 February 2018). We map and observe the fault zone and its behavior at depth by high spatial resolution dynamic strain sensing with optical fiber. In 2021-2022, we drilled and cored the fault, and deployed a 3D multi-cross-fault fiber array comprising a borehole loop with a depth of 700 m (Hole-A, Hanging wall site, crossing the fault at depth), a surface array crossing the fault rupture zone using commercial fiber, and a second borehole loop of 500m fiber (Hole-B, Footwall site). The high spatial resolution from distributed acoustic sensing (DAS) and the retrieved core combined with geophysical logs allow us to characterize the structure on meter-scale. Within the Milun fault zone, we identified a 20-m wide fault core comprised of gray and black gouge in the core sample. DAS strain-rate records associated with the same depth as the fault core show a distinct amplification. The amplification ratio of 2.5-3 is constant as for all types of events (local, teleseismic ), when compared to DAS channels at larger depth, related to a consolidated rock material. Although the fault gouge is narrow, the nature of the amplification in strain is due to its strong material contrast from fault gouge. This result may shed the light on the understanding of fault-zone dynamics in terms of remote earthquake triggering and near-fault ground motion.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-19
    Description: While many studies suggested that thick-skinned deformation may occur in the interior of a mountain belt and a thin-skinned contraction wedge is predominant near the foothills, we report the coexistence of both thin- and thick-skinned deformation beneath the foreland basin in southwestern Taiwan based on the high-resolution microearthquake distribution observed by a dense seismic array. We revealed three major tectonic elements in our study area, which are 1. A basal decollement of the thin-skinned wedge at a depth of about 5 km beneath the foothills and coastal plain. 2. A westward-dipping backthrust extending from the foothills to a depth of about 15 km beneath the Coastal Plain. 3. Foreland-vergence blind thrusts rooting on top of the backthrust at depths below ca. 8-15 km. The foreland-dipping back thrust may result from reactivating an ancient normal fault for being associated with an inverted half-graben. Our numerical modeling further demonstrated that this pre-existing normal fault becomes a passive roof thrust during later orogenic contraction. The rotation and westward movement of this backthrust would compress the rocks in front of it and create blind thrusts beneath the Coastal Plain. This thick-skinned deformation may also have affected the overlying tectonic wedge by building a ramp on the shallow decollement. As a result, the proto-Dajienshan fault might form at the ramp where stress concentrates.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-14
    Description: During February 2023, a total of 32 individual distributed acoustic sensing (DAS) systems acted jointly as a global seismic monitoring network. The aim of this Global DAS Month campaign was to coordinate a diverse network of organizations, instruments, and file formats to gain knowledge and move toward the next generation of earthquake monitoring networks. During this campaign, 156 earthquakes of magnitude 5 or larger were reported by the U.S. Geological Survey and contributors shared data for 60 min after each event’s origin time. Participating systems represent a variety of manufacturers, a range of recording parameters, and varying cable emplacement settings (e.g., shallow burial, borehole, subaqueous, and dark fiber). Monitored cable lengths vary between 152 and 120,129 m, with channel spacing between 1 and 49 m. The data has a total size of 6.8 TB, and are available for free download. Organizing and executing the Global DAS Month has produced a unique dataset for further exploration and highlighted areas of further development for the seismological community to address.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...