GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    London : The Geological Society
    Keywords: Basins (Geology) England, Northern ; Geology, Stratigraphic Carboniferous ; Atlas ; England Nord ; Karbon ; Becken ; Beckensediment ; Stratigraphie ; Geologie ; Reflexionsseismik ; Seismische Stratigraphie ; Sedimentationsbecken ; Sedimentation ; Paläogeografie ; England Nord ; Karbon ; Becken ; Beckensediment ; Stratigraphie ; Reflexionsseismik ; Seismische Stratigraphie ; Sedimentationsbecken ; Sedimentation
    Type of Medium: Online Resource
    Pages: V, 79 S. , Ill., graph. Darst., Kt. , 30 x 42cm
    Edition: Online-Ausg. Online-Ressource (PDF-Datei: S., MB/KB)
    Series Statement: Geological Society memoir 28
    DDC: 551.4409427
    RVK:
    Language: English
    Note: Includes bibliographical references and index
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: As a primary driving force, margin tilting is crucial for gravity-driven thin-skinned salt tectonics. We investigated how instant versus progressive margin tilting mechanisms influence salt tectonics using an analogue modeling setup where tilting rate could be controlled. Instant tilting resulted in initially high deformation rates, triggering widely distributed upslope extension and downslope contraction. Later, both the extensional and contractional domains migrated upslope as early extensional structures were successively deactivated, while deformation rates decreased exponentially. In contrast, progressive tilting led to downslope migration of the extensional domain by sequentially formed, long-lived normal faults. Contraction localized on a few, long-lived thrusts before migrating upslope. We attribute the distinct structural evolution of thin-skinned deformation, especially in the extensional domain, in the two tilting scenarios mainly to mechanical coupling between the brittle overburden and underlying viscous material. The coupling effect in turn is largely controlled by the deformation rate. By demonstrating the spatiotemporal variations of structural style and kinematic evolution associated with instant versus progressive tilting, we suggest that such variation is identifiable in nature and therefore can provide a new way to analyze margin tilting histories.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-13
    Description: This data set includes the results of digital image correlation analysis applied to analogue modelling experiments (Table 1) on the effect of weakness during distributed crustal extension performed at the Helmholtz Laboratory for Tectonic Modelling (HelTec) of the GFZ German Research Centre for Geosciences in Potsdam. Ten generic analogue models made of a layer of Quartz sand (G12, Rosenau et al., 2018) including a weak silicone oil “seed” (PDMS G30M, Rudolf et al., 2016) to localize deformation have been extended on top of a basal foam block. A benchmark experiment (basal foam only) and a reference model (layer of sand without seed) are also reported. Detailed descriptions of the experiments can be found in Osagiede et al. (2021) to which this data set is supplement. The models have been monitored by means of digital image correlation (DIC) analysis (Adam et al., 2005). DIC analysis yields quantitative information about model surface deformation in 2D and 3D. The data presented here are visualized as finite strain and displacement maps as well as cumulative strain and displacement profiles.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-11
    Description: Extensional systems evolve through different stages due to changes in the rheological state of the lithosphere. It is crucial to distinguish ductile structures formed before and during rifting, as both cases have important but contrasting bearings on the structural evolution. To address this issue, we present the illustrative ductile‐to‐brittle structural history of a metamorphic core complex (MCC) onshore and offshore western Norway. Combining geological field mapping with newly acquired 3‐D seismic reflection data, we correlate two distinct onshore basement units (BU1 and BU2) to corresponding offshore basement seismic facies (SF1 and SF2). Our interpretation reveals two 40 km wide domes (one onshore and one offshore), which both show characteristic kilometer‐scale, westward plunging upright folds. The gneiss domes fill antiformal culminations in the footwall of a 〉100 km long, shallowly west dipping, extensional detachment. Overlying Caledonian nappes and Devonian supradetachment basins occupy saddles of the hyperbolic detachment surface. Devonian collapse of the Caledonian orogen formed dome and detachment geometries. During North Sea rifting, brittle reactivation of the MCC resulted in complex fault patterns deviating from N‐S strike dominant at the eastern margin of the rift. Around 61°N, only minor N‐S faults (〈100 m throw) cut through the core of the MCC. Major rift faults (≤5 km throw), on the other hand, reactivated the detachment and follow the steep flanks of the MCC. This highlights that inherited ductile structures can locally alter the orientation of brittle faults formed during rifting.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-11-26
    Description: Pre-existing crustal structures are known to influence rifting, but the factors controlling their influence remain poorly understood. We present results of digital image correlation that allows for the surface strain analysis of a series of analogue rifting experiments designed to test the influence of the size, orientation, depth, and geometry of pre-existing crustal weak zones on strain localization and partitioning. We apply distributed basal extension to crustal-scale models consisting of a silicone weak zone embedded in a quartz sand layer. We vary the size and orientation (α-angle) of the weak zone with respect to the extension direction, reduce the thickness of the sand layer to simulate a shallow weak zone, and vary the geometry of the weak zone. Our results show that at higher α-angle (≥ 60o) both small- and large-scale weak zones localize strain into graben-bounding (oblique-) normal faults. At lower α-angle (≤ 45o), small-scale weak zones do not localize strain effectively, unless they are shallow. In most models, we observe diffuse, second-order strike-slip intra-graben structures, which are conjugate and antithetic under orthogonal and oblique extension, respectively. Generally, the observed spectrum of rift faulting styles (from discrete fault planes to diffuse fault zones, from normal to oblique and strike-slip) highlights the sensitivity of rift architecture to the orientation, size, depth, and geometry of pre-existing weak zones. Our generic models are comparable to observations from many natural rift systems like the North Sea and East Africa, and thus have implications for understanding the role of structural inheritance in rift basins.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-02-09
    Description: Understanding the internal structure of our planet is a fundamental goal of the earth sciences. As direct observations are restricted to surface outcrops and borehole cores, we rely on geophysical data to study the earth's interior. In particular, seismic reflection data showing acoustic images of the subsurface provide us with critical insights into sedimentary, tectonic, and magmatic systems. However, interpretations of these large 2D grids or 3D seismic volumes are time-consuming, even for a well-trained person or team. Here, we demonstrate how to automate and accelerate the analysis of these increasingly large seismic data sets with machine learning. We are able to perform typical seismic interpretation tasks such as mapping tectonic faults, salt bodies, and sedimentary horizons at high accuracy using deep convolutional neural networks. We share our workflows and scripts, encouraging users to apply our methods to similar problems. Our methodology is generic and flexible, allowing an easy adaptation without major changes. Once trained, these models can analyze large volumes of data within seconds, opening a new pathway to study the processes shaping the internal structure of our planet.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-04-03
    Description: Our understanding of continental rifting is, in large parts, derived from the stratigraphic record. This record is, however, incomplete as it does not often capture the geomorphic and erosional signal of rifting. New 3D seismic reflection data reveals a Late Permian-Early Triassic landscape incised into the pre-rift basement of the northern North Sea. This landscape, which covers at least 542 km2, preserves a drainage system bound by two major tectonic faults. A quantitative geomorphic analysis of the drainage system reveals 68 catchments, with channel steepness and knickpoint analysis of catchment-hosted palaeo-rivers showing that the landscape preserved a 〉2 Myrs long period of transient tectonics. We interpret that this landscape records punctuated uplift of the footwall of a major rift-related normal fault (Vette Fault) at the onset of rifting. The landscape was preserved by a combination of relatively rapid subsidence in the hangingwall of a younger fault (Øygarden Fault) and burial by post-incision sediments. As such, we show how and why erosional landscapes are preserved in the stratigraphic record, and how they can help us understand the tectono-stratigraphic evolution of ancient continental rifts.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-09
    Description: Understanding where normal faults are located is critical for an accurate assessment of seismic hazard; the successful exploration for, and production of, natural (including low-carbon) resources; and the safe subsurface storage of CO2. Our current knowledge of normal fault systems is largely derived from seismic reflection data imaging, intracontinental rifts and continental margins. However, exploitation of these data sets is limited by interpretation biases, data coverage and resolution, restricting our understanding of fault systems. Applying supervised deep learning to one of the largest offshore 3-D seismic reflection data sets from the northern North Sea allows us to image the complexity of the rift-related fault system. The derived fault score volume allows us to extract almost 8000 individual normal faults of different geometries, which together form an intricate network characterised by a multitude of splays, junctions and intersections. Combining tools from deep learning, computer vision and network analysis allows us to map and analyse the fault system in great detail and in a fraction of the time required by conventional seismic interpretation methods. As such, this study shows how we can efficiently identify and analyse fault systems in increasingly large 3-D seismic data sets.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...