GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book covers the fundamental principles and applications of sodium-ion batteries and reports experimental work on the use of electrolytes and different electrode materials, such as silicon, carbon, conducting polymers, and Mn- and Sn-based materials. Also discussed are state-of-the-art, future prospects and challenges in sodium-ion battery technology.
    Type of Medium: Online Resource
    Pages: 1 online resource (280 pages)
    Edition: 1st ed.
    ISBN: 9781644900833
    Series Statement: Materials Research Foundations Series ; v.76
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- NASICON Electrodes for Sodium-Ion Batteries -- 1. Introduction -- 2. Machinery of SIBs -- 2.1 Storing the progression of NASICON materials -- 2.2 Cathode materials based on NASICON type -- 2.2.1 NASICON-type nanoparticles of Fe2(MoO4)3 wrapped with graphene -- 2.2.2 NASICON-type materials based on Na3V2(PO4)3 -- 2.2.3 NASICON-type materials based on Na3V2(PO4)2F3 and Na3V2(PO4)3 -- 2.2.4 NASICON-type materials of porous Na3V2(PO4)3 and NaTi2(PO4)3 -- 2.2.5 A negative electrode of Mg0.5Ti2(PO4)3 based NASICON materials -- 2.2.6 Numerous other NASICON cathode materials -- 2.3 Anode materials based on NASICON-type -- 2.3.1 NaTi2(PO4)3 (NTP) type anode materials -- 2.3.2 NaZr2(PO4)3 (NZP) type anode materials -- 2.3.3 Numerous other NASICON anode materials -- 2.4 Commercial prospects of NIB technologies -- Conclusions -- Acknowledgment -- References -- 2 -- Carbon Anodes for Sodium-Ion Batteries -- 1. Introduction -- 2. Overview of SIBs electrode materials -- 3. Carbon anode materials for advanced SIBs -- 3.1 Graphite as anode for SIBs -- 3.2 Hard carbon as anode for SIBs -- 3.3 Graphene as anode for SIBs -- 3.4 Carbon nanofibers as anode for SIBs -- 3.5 Biomass-derived carbon as anode for SIBs -- 3.6 Heteroatom-doped carbon materials as anode for SIBs -- References -- 3 -- Organic Electrode Material for Sodium-Ion Batteries -- 1. Introduction -- 2. Molecular design of electrodes for organic sodium ion batteries -- 2.1 Organic electrodes constituting of C=O based reaction -- 2.1.1 Carbonyl compounds -- 2.1.2 Polyimides -- 2.1.3 Quinones -- 2.1.4 Carboxylates -- 2.1.5 Anhydrides -- 2.2 Organic electrodes based on doping reaction -- 2.2.1 Organic radical polymers -- 2.2.2 Conductive polymers -- 2.2.3 Conjugated microporous polymers -- 2.2.4 Organometallic polymers. , 2.3 Organic electrode constituting of C=N based reaction -- 2.3.1 Schiff bases -- 2.3.2 Pteridine derivatives -- 3. Electrode design for sodium-ion batteries -- 3.1 Molecular engineering -- 3.2 Polymerization -- 3.3 Combining with carbon (carbon hybrid) -- 3.4 Electrolyte modification -- 4 Future challenges -- References -- 4 -- Alloys for Sodium-Ion Batteries -- 1. Introduction -- 2. Sodium ion batteries anode materials -- 3. Hard carbon -- 4. Carbon nanostructures -- 5. Carbon and alloy-based material composites -- 6. Alloying reactions-based anode materials -- 6.1 P-based materials -- 6.1.1 Red phosphorous -- 6.1.2 Black phosphorous -- 7. Conversion based material -- 7.1 Metal oxides -- 7.2 Metal sulfides -- 8. Graphene -- Conclusion and challenges -- Acknowledgments -- References -- 5 -- Mn-Based Materials for Sodium-Ion Batteries -- 1. Introduction -- 2. History -- 3. Types -- 4. Sodium-ion batteries -- 5. Mn-based sodium-ion batteries -- References -- 6 -- Tin-Based Materials for Sodium-Ion Batteries -- 1. Introduction -- 2. Types of Sn-based anodes -- 3. Electrochemical performance -- 4. Structure and design -- 5. Performance -- 6. Thermal stability -- 7. Mechanism -- 8. Drawbacks -- 9. Factors affecting the capacity of Sn based sodium ion batteries -- Conclusion -- References -- 7 -- Conducting Polymer Electrodes for Sodium-Ion Batteries -- 1. Introduction -- 2. Types of Energy depository technologies in static application -- 2.1 Pump hydroelectric depository (PHD) -- 2.2 Compressed air energy depository (CAED) -- 2.3 Electrochemical energy storage (EED) -- 3. Lithium-ion batteries (LIBs) -- 4. Beginning of new technology in the field of energy storage -- 4.1 Electrode material for SIBs -- 5. Polymer electrode material for the SIBs -- 5.1 Polyimides -- 6. Conducting polymers. , 6.1 Conducting polymer can provide electromagnetic shielding of electronic devices -- 6.2 It absorbs microwaves by using stealth technology -- 6.3 It can be used as a hole injecting electrode for OLEDs -- 6.4 Some conducting polymers are promising for field effect transistor (FET) -- 6.5 It can be used in display technology due to their electroluminescent property -- 7. Types of conductive polymer -- 7.1 Electrically conducting polymer -- 7.2 Doping in conductive polymer -- 7.3 Polyacetylene and polyphenylene as electrode material for the SIBs -- 7.4 Conjugated conductive polymer and charge storage mechanism -- 7.5 Non-conjugated conductive radical polymer -- 7.6 Inorganic nanoparticles-conducting polymer composite based battery electrodes -- 8. Why conducting polymer? -- 9. Functions of CPs -- 9.1 Merits and demerits of the conducting polymer -- Conclusion -- Acknowledgement -- References -- 8 -- Recent Progress in Electrode Materials for Sodium Ion Batteries -- 1. Introduction -- 2. History and working principal of SIB -- 3. Anode Materials for SIB -- 3.1 Metal Oxide Anode Materials -- 3.2 Alloy Anode Materials -- 4. Cathode Materials for SIBs -- 4.1 Layered Oxide Cathode Materials -- 4.2 Polyanionic Cathode Materials -- Conclusion -- References -- 9 -- Electrolytes for Na-O2 Batteries: Towards a Rational Design -- 1. Introduction -- 2. Na-O2 Batteries -- 3. Instability of electrolyte -- 4. The use of additives -- 5. Outlook -- Acknowledgements -- References -- 10 -- State-of-the-Art, Future Prospects and Challenges in Sodium-Ion Battery Technology -- 1. Introduction -- 2. Background -- 3. State-of-the-art or current status of SIBs -- 4. Hurdles in SIBs -- 5. Next-generation battery research -- 5.1 SexSy-based negative electrode materials (NEMs) -- 5.2 Na3M2(PO4)2F3 [M¼Ti, Fe, V] based NEMs. , 5.3 Inclusion of fluorinated ethylene carbonate (FEC) in the electrolyte -- 5.4 Efficient cycling process by Sb in SIBs -- 5.5 SnSb as NEMs -- 6. Economic perspective of SIBs -- 6.1 Battery Performance and Cost model (BatPaC model) -- 6.2 Cost of cathode -- 6.3 Cost of anode -- 6.4 Cost of electrolyte -- 6.5 Fluctuations or variation in price -- 6.6 Limitation of BatPaC model -- 7. A materialistic outlook of SIBs -- 8. Challenges of SIBs -- 8.1 Limitations and materialistic barriers -- 8.2 Challenges of NEMs -- 9. Future opportunities -- Acknowledgment -- References -- 11 -- Conducting Polymers for Sodium-Ion Batteries -- 1. Introduction -- 2. Applications on cathode materials -- 2.1 Doped and pure conducting polymer cathodes -- 2.2 Conducting polymer-based composite cathode -- 3. Applications on anode materials -- 3.1 Doped and pure conducting polymer anodes -- 3.2 Conducting polymer-based composite anode -- Conclusions & -- Outlooks -- Acknowledgment -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book presents theoretical insights, characterization tools and mechanisms of green corrosion inhibitors.
    Type of Medium: Online Resource
    Pages: 1 online resource (242 pages)
    Edition: 1st ed.
    ISBN: 9781644901052
    Series Statement: Materials Research Foundations Series ; v.86
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Theoretical Insights in Green Corrosion Inhibitors -- 1. Introduction -- 2. Theoretical methods used in green corrosion inhibitors -- 2.1 Quantum chemistry methods -- 2.2 Quantitative structure-activity relationships -- 2.3 Molecular dynamics simulation -- 3. The progress of theoretical study in green corrosion inhibitors -- 3.1 The behavior of green corrosion inhibitor studied by combination of quantum chemistry and QSAR -- 3.1.1 Carbon steel inhibitors -- 3.1.2 Copper inhibitors -- 3.2 The performance of green corrosion inhibitor studied by combination of molecular simulation and quantum chemistry -- 3.2.1 Carbon steel inhibitor -- 3.2.2 Aluminum inhibitors -- 3.2.3 Copper inhibitors -- 3.3 The behavior of green corrosion inhibitor studied by combination of molecular simulation, quantum chemistry and QSAR -- 3.3.1 Carbon steel inhibitors -- 3.3.2 Copper inhibitors -- Conclusions -- Acknowledgments -- References -- 2 -- Effect of Natural Sources on the Corrosion Inhibition -- 1. Introduction -- 2. Green corrosion inhibitors -- 2.1 Protection of iron based surfaces via green corrosion inhibitors -- 2.1.1 Protection of iron surfaces via green corrosion inhibitors -- 2.1.2 Protection of mild steel surfaces via green corrosion inhibitors -- 2.1.3 Protection of steel surfaces via green corrosion inhibitors -- 2.1.4 Protection of carbon steel surfaces via green corrosion inhibitors -- 2.1.5 Protection of steel rebar surfaces via green corrosion inhibitors -- 2.2 Protection of aluminum surfaces via green corrosion inhibitors -- 2.3 Protection of copper surfaces via green corrosion inhibitors -- 2.4 Protection of tin surfaces via green corrosion inhibitors -- 2.5 Green corrosion inhibitors resources -- 3. Anti-corrosion mechanism (for natural inhibitors). , 3.1 Anodic, cathodic and mixed type inhibition -- 4. Corrosion inhibitors testing -- 5. Economic and industrial opportunities -- References -- 3 -- Green Inhibitors for Biocorrosion and Prevention -- 1. Introduction -- 1.1 The portability of the metal to the corrosion -- 1.2 The factors affecting the speed of corrosion -- 1.3 Types of corrosions -- 1.3.1 Pure chemical corrosion -- 1.3.2 Electrochemical corrosion -- 1.3.3 Homogeneous (general) corrosion -- 1.3.4 Local corrosion -- 1.3.5 Stress - corrosion cracking -- 1.3.6 Galvanic corrosion -- 1.3.7 Erosion corrosion (EC) -- 1.3.8 Crevice corrosion -- 1.3.9 Pitting corrosion (PC) -- 1.3.10 Exfoliation corrosion -- 1.3.11 Selective leaching -- 1.3.12 Nonmetallic corrosion -- 1.3 Corrosion of cement -- 1.5 Corrosion of organic materials -- 1.6 Environment factors -- 1.6.1 Effect of oxygen and oxidants -- 1.6.2 Effect of pH -- 1.6.2 Effect of anions and cations -- 1.7 Anti-corrosion methods -- 1.7.1 The green impediments for corrosion -- 1.7.2 Determination of green corrosion inhibitors based on ionic fluids -- 1.7.3 Corrosion suppressions from the biological waste -- Conclusion -- References -- 4 -- Electrochemical Studies of Green Corrosion Inhibitors -- 1. Introduction -- 2. Corrosion inhibitors -- 2.1 Green corrosion inhibitors -- 2.1.1 Natural products -- 2.1.2 Amino acids -- 2.1.3 Rare earth metal compounds -- 2.1.4 Recently used green inhibitors -- 3. Characterization techniques -- 3.1 Polarization methods -- 3.1.1 Linear polarization resistance method -- 3.1.2 Potentiodynamic-galvanodynamic polarization -- 3.1.3 Cyclic potentiodynamic polarization -- 3.1.4 Cyclic galvano-staircase polarization -- 3.1.5 Conversion of Icorr (from polarization methods) to corrosion rates -- 3.1.6 Limitations associated with polarization methods -- 3.2 Electrochemical impedance spectroscopy (EIS). , 3.2.1 Interpretation of results (Nyquist & -- Bode plots) -- 3.2.2 Equivalent circuits -- 3.3 Electrochemical Noise (EN) measurements -- 3.4 Electrochemical Quartz Crystal Microbalance (EQCM) -- Concluding remark -- References -- 5 -- Green Corrosion Inhibitors for Technological Applications -- 1. Introduction -- 2. Green corrosion inhibitors -- 3. Technological applications of green corrosion inhibitors -- 3.1 Oil and gas sector -- 3.2 Reinforced concrete -- 3.3 Acid pickling industry -- 3.4 Coatings -- 3.5 Aircraft industry -- 3.6 Water industry -- Conclusion -- Acknowledgment -- References -- 6 -- Pyrazine Derivatives as Green Corrosion Inhibitors -- 1. Introduction -- 2. Pyrazine and its derivative as prominent corrosion inhibitor for metals and alloys in corrosive media -- 3. Adsorption mechanism -- Further aspects -- Conclusion -- Abbreviations -- Acknowledgement -- References -- 7 -- Biological Corrosion Inhibitors for Concrete -- 1. Introduction -- 2. Biological Corrosion Inhibitors -- 2.1 Microbial -- 2.1.1 Bacterial -- 2.1.1.1 Ureolytic -- 2.1.1.2 Non-ureolytic -- 2.1.2 Nitrate reducing bacteria -- 2.1.3 Biomolecules -- 2.1.4 Deoxyribonucleic acid (DNA) -- 2.1.5 Mussel adhesive proteins -- 2.1.6 Fungus -- 2.2 Botanical -- 2.2.1 Extract of tree/plant leaves -- 2.2.2 Bark extract of trees/plants -- 2.2.3 Seeds or grains -- 2.2.4 Plant roots extracts -- 2.2.5 Plants mucilage -- 2.2.6 Algae -- 3. Comparison -- Conclusion -- References -- 8 -- Green Corrosion Inhibitor for Electronics -- 1. Introduction -- 2. Causes and factors for corrosion in electronics -- 2.1 Contaminant gases affect the manufacturing areas -- 2.2 Other problems faced in manufacturing process -- 2.3 Effects of ammonia -- 2.4 Effects of ozone, boron and other volatile organic compounds -- 2.5 Airborne contamination in various sector -- 2.5.1 Telecom industry. , 2.5.2 Distributed control system (DCS) -- 2.5.3 Data centers -- 3. Metals or specific alloys component for electronics -- 4. Electronic component susceptibility towards corrosion and failure analysis -- 4.1 Printed circuit board -- 4.2 Contact and connector -- 4.2.1 Pore corrosion in electrical contacts -- 4.2.2 Fretting corrosion of electronic connectors -- 4.3 Integrated circuits -- 4.4 Solder corrosion: the corrosive effect of soldering flux -- 4.5 Hermetic packages -- 5. Reliability and cleanliness -- 6. Electronics corrosion protection -- 7. Vapor phase corrosion inhibitor (VPCI) technology -- 8. Vapor pressure measurement by various methods -- 8.1 Regnault dynamic method -- 8.2 Boiling point determination method -- 8.3 Knudsen effusion method -- 8.4 Microbalance method -- 8.5 Torsion effusion method -- 9. Effect of temperature on the vapor pressure -- 10. Effect of pH -- 11. Types of vapor phase corrosion inhibitors (VPCI) -- 12. Analysis of corrosion by different method -- 12.1 Vapor pressure determination -- 12.2 Weight loss method -- 12.3 Esckhe method -- 12.4 Salt spray method -- 13. Advantages of VPCI -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book presents an in-depth review of biomass-derived materials for energy storage technologies. Biomass is the most renewable and abundant carbon resource and has great potential for sustainable energy production.
    Type of Medium: Online Resource
    Pages: 1 online resource (151 pages)
    Edition: 1st ed.
    ISBN: 9781644900871
    Series Statement: Materials Research Foundations Series ; v.78
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Bone Char as a Support Material to Build a Microbial Biocapacitor -- 1. Introduction -- 2. Influence of the chemical and textural properties on biochar -- 3. Bioanode preparation -- 4. Accumulated charge -- 5. Biochar-based anode and bioanode capacitances -- Conclusions -- Acknowledgements -- List of abbreviations -- References -- 2 -- Nature Inspired Materials for Energy Storage -- 1. Introduction -- 2. Properties of nature-derived carbons properties for fulfilling the operational need for EDLC- supercapacitors -- 3. Various preparation mechanisms for nature derived carbons for supercapacitor -- 4. Advantages of naturally-derived carbons over graphene and CNT for EDLC supercapacitors -- 5. Use of different biological precursors -- 5.1 Plant-derived precursors -- 5.2 Fruit based precursors -- 5.3 Microbial-based precursors -- 5.4 Animal-based precursors -- 6. Structural characteristics and properties of nature derived carbons -- Conclusions and future directions -- References -- 3 -- Biomass Derived Composites for Energy Storage -- 1. Introduction -- 2. Sustainable biomass-carbon materials -- 3. Calculation paramaters -- 4. Biomass activation -- 4.1 Physical activation -- 4.2 Chemical activation -- 4.3 Hydrothermal carbonization -- 4.4 Other activations -- 5. Outlook -- Conclusions and prospects -- References -- 4 -- Lignin-Derived Materials for Energy Storage -- 1. Introduction -- 2. Lignin isolation process -- 3. Lignin carbon fibres -- 3.1 Activation techniques -- 3.2 Lignin- Lignin blends -- 3.3 Lignin-Cellulose blends -- 3.4 Fractionation -- 3.5 Reinforcement -- 3.6 Chemical modification -- 3.7 New lignin types -- 4. Lignin-derived porous carbon -- 5. Challenges with graphite-based electrodes -- 6. Lignin for electrochemical applications -- 6.1 Lithium-ion batteries. , 6.2 Electrochemical double layer capacitors -- 6.3 Electrochemical pseudocapacitors -- 6.4 Sodium -ion batteries -- 6.5 Lignin as binder -- Conclusion and Perspectives -- Acknowledgements -- This research work was financially supported by the University Malaya Impact-Oriented Interdisciplinary Research Grant (No.IIRG018A-2019) and Global Collaborative Programme - SATU Joint Research Scheme (No. ST012-2019). -- References -- 5 -- Bamboo Derived Materials for Energy Storage -- 1. Introduction -- 2. Fabrication of electrode material for supercapacitor application -- 3. Physical characterization -- 4. Electrochemical measurements -- Conclusion -- References -- 6 -- Cellulose-Derived Electrodes for Energy Storage -- 1. Introduction -- 2. Cellulose based flexible composite electrodes -- 3. Cellulose carbonization and activation -- 4. Cellulose-derived carbon for supercapacitors -- 5. Cellulose-derived carbon for high-frequency supercapacitors -- 6. Cellulose-derived carbon for lithium-ion batteries -- 7. Cellulose-derived carbon for lithium-sulfur batteries -- 8. Cellulose-derived carbon for other batteries -- Conclusion -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: This book focuses on aerogels and their applications in such areas as energy storage, thermal storage, catalysis, water splitting and environmental remediation.
    Type of Medium: Online Resource
    Pages: 1 online resource (282 pages)
    Edition: 1st ed.
    ISBN: 9781644900994
    Series Statement: Materials Research Foundations Series ; v.84
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Nanocellulose Aerogels -- 1. Introduction -- 2. Production processes of nanocellulose aerogels -- 3. Properties of nanocellulose aerogels -- 4. Applications of nanocellulose aerogels -- 4.1 Materials absorbents -- 4.2 Gas filters and membranes -- 4.3 Packaging materials -- 4.4 Energy storage systems and electrical devices -- 4.5 Thermal insulation and fire-retardant materials -- 4.6 Pharmaceutical and biomedical applications -- 5. Final considerations -- References -- 2 -- Porous Aerogels -- 1. Porous aerogel history -- 2. Aerogel pore classification -- 3. Inorganic-silica based aerogels -- 3.1 Properties of silica-based aerogel -- 3.1.1 Texture -- 3.1.2 Thermal properties -- 3.1.3 Optical properties -- 3.1.4 Entrapment, release, sorption, and storage properties -- 4. Inorganic-nonsilicate aerogels -- 4.1 ZrO2 aerogels -- 4.1.1 ZrO2 aerogels in catalysis -- 4.1.2 ZrO2 aerogels in ceramics -- 4.1.3 ZrO2 aerogels in solid oxide fuel cells -- 4.2 TiO2 aerogels -- 5. Organic-natural/biogels -- 5.1 Polysaccharides aerogels -- 5.2 Chitosan aerogel -- 5.3 Pectin aerogel -- 5.4 Alginate aerogel -- 5.5 κ -Carrageenan aerogel -- 5.6 Starch aerogel -- 5.7 Curdlan aerogel -- 5.8 Cellulose aerogels -- 5.8.1 Cellulose aerogel monoliths -- 5.8.2 Nanostructured cellulose filaments in textile -- 6. Resorcinol-formaldehyde aerogels -- 7. Composite aerogels -- 7.1 Polymer-crosslinked aerogels -- 7.2 Effect of polymer addition on aerogel fragility -- 8. Exotic aerogels -- 8.1 Chalcogenide aerogels -- 8.1.1 Chalcogenide aerogels formation by thiolysis: GeS2 -- 8.1.2 Chalcogenide aerogels formation by cluster-linking -- 8.1.3 Chalcogenide aerogels formation by nanoparticle assembly -- 9. Conducting polymer aerogel -- 9.1 Conducting polymer aerogels- A property prospective -- 9.1.1 PEDOT aerogels. , 9.1.2 Polypyrrole (Ppy) aerogels -- 9.1.3 Polyaniline (PANi) aerogels -- 10. Sonogels -- 11. Graphene aerogel -- 11.1 Preparation of reduced graphene oxide aerogels -- 12. Carbon nanotubes (CNTs) aerogel -- 13. Hybrid aerogel -- 13.1 Class-I hybrid composites -- 13.2 Class-II hybrid composite -- 14. Application of porous aerogel -- 14.1 Thermal insulation -- 14.2 Removal of pollutants -- 14.3 Elimination of solid particle from gases -- 14.4 CO2 capture -- 14.5 Volatile organic compounds/catalysis -- 14.6 Water treatment -- 14.6.1 Oils in water -- 14.6.2 Wastewater and brackish water treatment -- 14.7 Biomedical applications -- 14.7.1 Aerogels for the administration of medicines -- 14.7.2 Tissue engineering -- 14.7.3 Biosensing -- References -- 3 -- Hybrid Silica Aerogel -- 1. Introduction -- 2. Hybrid silica aerogel -- 2.1 Polymer-silica aerogel -- 2.2 Biomolecules-silica aerogel -- 2.3 Graphene-silica aerogel -- 3. Final remarks -- Acknowledgements -- References -- 4 -- Silica Aerogel -- 1. Introduction -- 2. Synthesis methodology -- 2.1 Bare silica aerogels -- 2.2 Modified silica aerogels -- 3. Physico-chemical properties and applications -- 3.1 Thermal insulating application -- 3.2 Optical property application -- 3.3 Electronic application -- 3.4 Acoustic insulation applications -- 3.5 Biomedical applications -- 3.6 Environmental applications -- 3.7 Others applications -- 3.7.1 Space and detector -- 3.7.2 Oil spill clean-up -- 3.7.3 Aerospace -- Conclusions and future prospects -- References -- 5 -- Carbon Aerogels -- 1. Introduction -- 2. Types of carbon aerogels -- 2.1 Low flexible-carbon aerogel -- 2.2 Super flexible-carbon aerogel -- 2.3 Carbon nano tube aerogels -- 2.4 Graphene nano aerogel -- 2.5 Nano-diamond aerogel -- 2.6 Ni-doped carbon aerogel -- 2.7 Pt, Pd, Ag and Ru-doped carbon aerogel -- 2.8 Ce, Zr-based carbon aerogel. , 3. General characteristics and properties -- 3.1 Bulk density and porosity -- 3.2 Backbone density -- 3.3 Backbone connectivity -- 3.4 Pore connectivity -- 3.5 Pore size -- 3.6 Thermal properties -- 3.7 Electrical properties -- 3.8 Electrochemical properties -- 3.9 Mechanical properties -- 3.10 Gas-transport properties -- 3.11 Optical properties -- 4. Applications -- 4.1 Electrochemical field -- 4.2 Hydrogen storage -- 4.3 Catalyst support -- 4.4 Thermal insulation -- 4.5 Adsorbent for waste water treatment -- 4.6 Photocatalyst for waste water treatment -- 4.7 Sensor application -- Conclusions -- References -- 6 -- Magnetic Aerogels -- 1. Introduction -- 2. Cellulose magnetic aerogels -- 3. Magnetic graphene aerogel -- 4. Carbon magnetic aerogel -- 5. Magnetic silica aerogels -- 6. Magnetic pectin aerogel -- Conclusions -- Acknowledgements -- References -- 7 -- Properties of Aerogels -- 1. Introduction -- 2. Structure -- 3. Thermal properties -- 3.1 Silica aerogels -- 3.2 Organic and polymeric aerogels -- 3.3 Carbon aerogels -- 4. Electrical properties -- 4.1 Aerogels with low conductivity -- 4.2 Low dielectric constant materials -- 4.3 Aerogels with high conductivity -- 5. Optical properties -- 5.1 Radiators in Cherenkov counters -- 5.2 Fiber optics -- 5.3 Non reflective materials -- 6. Mechanical properties -- 7. Acoustic properties -- 8. Biocompatibility -- Conclusion -- Acknowledgements -- References -- 8 -- Tailor-Made Aerogels -- 1. Introduction -- 2. Existing and potential applications of aerogels -- 2.1 Pore engineering -- 2.2 Customizable surface and coating -- 2.3 Hybrid aerogels (HAgs): Influence of the sol-gel process on final properties -- 3. Applications of Tailor-made aerogels -- Conclusions -- Acknowledgments -- References -- 9 -- Aerogels Envisioning Future Applications -- 1. Introduction -- 2. Future applications of bioaerogels. , 2.1 Bioaerogels applied as functional foods -- 2.2 Bioaerogels applied as thickeners and stabilizers -- 2.3 Bioaerogels applied as medicines and scaffolding in tissue repair -- 3. Future applications of polymeric aerogel -- 3.1 Polymeric aerogel as impact absorbing materials -- 3.2 Polymeric aerogels used as catalyst supports -- 3.3 Polymeric aerogels can be used as aerospace components -- 4. Future applications of carbon aerogel -- 4.1 Future applications of carbon aerogels as photocatalytic components, electrodes and supercapacitor -- 4.2 Materials against electromagnetic interference, lipid adsorbents and scaffolds for polymers -- 5. Future applications of inorganic aerogels -- 5.1 Inorganic aerogels used as fuel cells -- 5.2 Inorganic aerogels used as catalysts -- Conclusion -- Acknowledgements -- The authors thank the Coordination for the Improvement of Higher Education Personnel (CAPES) and National Council of Scientific and Technological Development (CNPq) for funding this research. -- References -- 10 -- Recent Patents on Aerogels -- 1. Introduction -- 2. Applications -- 2.1 Patents on aerogel generators(WO 2004/022242 Al) -- 2.2 Aerogel blanket and its production (PCT/US2014/022919) -- 2.3 Cellulose aerogels PCT/GB2010/051542 -- 2.4 Some miscellaneous patents -- Acknowledgments -- References -- 11 -- State-of-the-Art and Prospective of Aerogels -- 1. Introduction -- 2.1 Synthesis of aerogels -- 3. State-of-the-art of aerogel -- 3.1 State-of-the-art properties of aerogel -- 3.2 State-of-the-art of preparation of aerogel -- 4. Future prospective of aerogel -- 4.1 Thermal insulation -- 4.2 Drug delivery -- 4.3 Energy storage device -- Acknowledgments -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book reviews the fundamental concepts and recent advances in the areas of anodes, cathodes, electrolytes, separators, binders, fabrication of device assemblies and electrochemical performance.
    Type of Medium: Online Resource
    Pages: 1 online resource (211 pages)
    Edition: 1st ed.
    ISBN: 9781644900918
    Series Statement: Materials Research Foundations Series ; v.80
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Fabrication of TiO2 Materials for Lithium-ion Batteries -- 1. Introduction -- 2. Synthesis of TiO2 /graphene nanocomposites and metal oxides core-shells SnO2@TiO2 nanotube hybrids -- 2.1 Preparation of TiO2 NRDS -- 2.2 Synthesis of TiO2 NFBS -- 2.3 Synthesis of TiO2 nanocomposites with graphene -- 2.4 Synthesis of coaxial SnO2@TiO2 nanotube hybrids -- 3. Fabrication of cell for electrochemical characterization -- 3.1 Electrochemical measurements for TiO2/graphene nanocomposite -- 3.2 Electrochemical tests for coaxial SnO2@TiO2 nanotube hybrids -- 4. Characterization of TiO2/graphene nanocomposites -- 4.1 TiO2 /graphene nanocomposites -- 4.1.1 SEM -- 4.1.2 TEM -- 4.1.3 XRD -- 4.1.4 Raman -- 4.1.5 BET -- 4.1.6 EDX -- 4.2 Electrochemical Testing -- 5. Characterization of coaxial SnO2@TiO2 nanotube hybrids -- 5.1 Coaxial SnO2@TiO2 nanotube hybrids -- 5.1.1 SEM & -- TEM -- 5.1.2 XRD -- 5.1.4 Electrochemical testing -- Conclusion -- Acknowledgement -- References -- 2 -- A Brief History of Conducting Polymers Applied in Lithium-ion Batteries -- 1. Introduction -- 2. Applications on cathode materials -- 2.1 Before 2000: Emergence stage -- 2.2 2000-2006: Preliminary stage -- 2.3 Since 2007: Fast development stage -- 3. Applications on anode materials -- 3.1 Before 2010: Emergence stage -- 3.2 Since 2010: Rising stage -- Conclusions & -- Outlooks -- Acknowledgment -- References -- 3 -- 2D Transition Metal Dichalcogenides for Lithium-ion Batteries -- 1. Introduction -- 2. MoS2-based anode materials for LIBs -- 3. WS2-based anode materials for LIBs -- 4. MoSe2 based anode materials for LIBs -- 5. WSe2-based anode materials for LIBs -- 6. Other TMDs for LIBs -- 7. Summary and future outlooks -- Acknowledgement -- References -- 4 -- Metal Sulphides for Lithium-ion Batteries. , 1. Introduction -- 2. Demands on batteries in 21st Century -- 3. Design of a lithium-ion battery (LIB) -- 4. Materials related issues in LIBs in modern era -- 5. Advantages of metal-sulphides for LIBs -- 6. Metal sulphide based nanocomposites for battery applications -- 7. Different types of metal sulphides as anode materials in the LIBs applications -- 7.1 Layered metal-sulphides for LIBs. -- 7.2 Copper sulphides -- 7.3 Cobalt sulphides -- 7.4 Molybdenum disulphide (MoS2) -- 7.5 Tungsten disulphide (WS2) -- 7.6 Iron disulphide (FeS2) -- 7.7 Tin sulphides -- 7.8 Nickel Sulphides -- 8. Synthesis techniques for metal sulphides -- 8.1 Solid state method -- 8.2 The hydro/solvothermal method -- 8.3 Microwave-assisted hydrothermal synthesis -- 8.4 Spraying-related methods -- 9. Summary -- References -- 5 -- Magnetic Nanomaterials for Lithium-ion Batteries -- 1. Introduction -- 2. History of LIBs -- 3. LIB Technology -- 4. LIB working principle -- 5. Nanomaterials -- 6. Nanomaterials in anode for LIBs -- 7. Nanomaterials in cathode for LIBs -- Conclusions -- References -- 6 -- Recent Advances in Nanomaterials for Li-ion Batteries -- 1. Introduction -- 2. Structure and working of Li-ion battery -- 3. Electrochemical behavior of various materials for Li-ion batteries -- Conclusions -- References -- 7 -- Silicon Materials for Lithium-ion Battery Applications -- 1. Introduction -- 1.1 Overview on lithium battery technology -- 1.2 Silicon as anode for lithium batteries: -- 1.2.1 0D nanostructures -- 1.2.2 1D nanostructures -- 1.2.3 2D nanostructures -- 1.2.4 3D-nanostructures -- 2. Electrochemical performance of silicon based nanostructures -- Conclusion -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Sharjah :Bentham Science Publishers,
    Keywords: Electronic books.
    Description / Table of Contents: Increased industrial and agricultural activity has led to the contamination of the earth's soil and groundwater resources with hazardous chemicals. The presence of heavy metals, dyes, fluorides, dissolved solids, and many other pollutants used in industry and agriculture are responsible for hazardous levels of water pollution. The removal of these pollutants in water resources is challenging. Bioremediation is a new technique that employs living organisms, usually bacteria and fungi, to remove pollutants from soil and water, preferably in situ. This approach is more cost-effective than traditional techniques, such as incineration of soils and carbon filtration of water. It requires understanding how organisms consume and transform polluting chemicals, survive in polluted environments, and how they should be employed in the field. Bioremediation for Environmental Pollutants discusses the latest research in green chemistry and practices and principles involved in quality improvement of water by remediation. It covers different aspects of environmental problems and their remedies with up-to-date developments in the field of bioremediation of industrial/environmental pollutants. Volume 1 focuses on the bioremediation of heavy metals, pesticides, textile dyes removal, petroleum hydrocarbon, microplastics and plastics. This book is invaluable for researchers and scientists in environmental science, environmental microbiology, and waste management. It also serves as a learning resource for graduate and undergraduate students in environmental science, microbiology, limnology, freshwater ecology, and microbial biotechnology.
    Type of Medium: Online Resource
    Pages: 1 online resource (519 pages)
    Edition: 1st ed.
    ISBN: 9789815123494
    Series Statement: Sustainable Materials Series ; v.2
    Language: English
    Note: Cover -- Title -- Copyright -- End User License Agreement -- Contents -- Preface -- List of Contributors -- Microbial Remediation of Heavy Metals -- Removal of Heavy Metals using Microbial Bioremediation -- Deepesh Tiwari1, Athar Hussain2,*, Sunil Kumar Tiwari3, Salman Ahmed4, Mohd. Wajahat Sultan5 and Mohd. Imran Ahamed6 -- INTRODUCTION -- HEAVY METALS: SOURCES AND EFFECTS -- HEAVY METALS OCCURRENCES -- HEAVY METAL REMOVAL STRATEGIES -- Physical Methods -- Chemical Methods -- Biological Methods -- Phytoremediation -- Bioremediation -- Mechanism of Bioremediation -- Bioremediation by Biosorption -- Bioremediation by Bioaccumulation -- Comparison of Biosorption and Bioaccumulation Process -- Biotechnological Intervention in Bioremediation Processes by the Microbial Approach -- The Ability of Microorganisms to Bioremediate Heavy Metals -- Bacteria Remediation Capacity of Heavy Metal -- Fungi Remediation Capacity of Heavy Metal -- Remediation Capacity of Heavy Metal by Algae -- Heavy Metal Removal Using Biofilms -- Plant Approach -- Advantages of Bioremediation -- Disadvantages of Bioremediation -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Bioremediation of Heavy Metal in Paper Mill Effluent -- Priti Gupta1,* -- INTRODUCTION -- PAPER & -- PULP INDUSTRY: GLOBAL OUTLOOK ON UTILITY AND GROWTH -- PAPER & -- PULP INDUSTRY: GLOBAL OUTLOOK ON HAZARDS -- PAPER MAKING PROCESSES AND WASTEWATER GENERATION -- Debarking -- Pulping -- Mechanical Pulping -- Chemical Pulping -- Bleaching -- Washing -- Stock Preparation and Paper Making Process -- HEAVY METALS AT GLANCE -- Adverse Effect of Heavy Metal Contamination -- Soil -- Microbial Population -- Plants -- Animals -- Humans -- Remediation Technologies for the Treatment of Heavy Metal Contaminated Wastewater Effluent. , BIOREMEDIATION: AN INNOVATIVE AND USEFUL APPROACH -- Industrial by-Products -- Agricultural Wastes -- Phytoremediation Methods and its Types -- Microbial Biosorbents -- MICROBIAL BIOREMEDIATION METHODS -- Biosorption -- How Does Biosorption Works? -- Important Factors Governing Biosorption Mechanism -- Types of Biosorption -- Examples of Efficient Biosorbents -- Advantages -- Biotransformation -- Bioaccumulation -- Bioleaching -- FACTORS AFFECTING MICROBIAL REMEDIATION OF HEAVY METALS -- CHALLENGES -- CONCLUSION AND FUTURE ASPECTS -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Bioremediation of Pesticides -- Praveen Kumar Yadav1,2,*, Kamlesh Kumar Nigam3, Shishir Kumar Singh2,4, Ankit Kumar5 and S. Swarupa Tripathy1 -- INTRODUCTION -- Pesticides -- Bioremediation of Pesticides -- Type of Bioremediation -- In-situ Bioremediation -- Ex-situ Bioremediation -- Aerobic Bioremediation -- Anaerobic Bioremediation -- Mycodegradation of Pesticides -- Mycodegradation of Pesticides -- Bacterial Degradation of Pesticides -- Mechanisms Involved in Bioremediation -- Genetic Modification in Bioremediation Tools -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Biosurfactants for Biodégradation -- Telli Alia1,* -- INTRODUCTION -- BIOSURFACTANTS -- Definition and Importance -- Surface Activity -- Critical Micelle Concentration (CMC) -- Hydrophile-lipophile Balance -- Emulsion Stability -- Classification, Properties and Applications of Biosurfactants -- APPLICATION OF BIOSUFACTANT IN BIODEGRADATION -- Biodegradation of Crude Oil and Petroleum Wastes -- Removal and Detoxification of Heavy Metals -- Biodegradation of Pesticides -- Biodegradation of Organic Dyes -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- REFERENCES. , Potential Application of Biological Treatment Methods in Textile Dyes Removal -- Rustiana Yuliasni1, Bekti Marlena1, Nanik Indah Setianingsih1, Abudukeremu Kadier2,3,*, Setyo Budi Kurniawan4, Dongsheng Song2,5 and Peng-Cheng Ma2,3 -- INTRODUCTION -- HISTORY AND CLASSIFICATION OF DYES -- History of Textile Dyes -- Classification of Dyes Based on Industrial Application -- Direct Dyes -- Disperse Dyes -- Vat Dyes -- Basic Dyes -- Acid Dyes -- Sulphur Dyes -- Azo Dyes -- Reactive Dyes -- Dyes Classification Based on Chromophores -- ENVIRONMENTAL CONCERN RELATED TO DYES -- DYES REMOVAL TECHNIQUES -- BIODEGRADATION MECHANISMS OF DYES -- Biosorption -- Bioaccumulation -- Biodegradation -- FUTURE PROSPECTS FOR APPLICATION -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Fungal Bioremediation of Pollutants -- Evans C. Egwim1,*, Oluwafemi A. Oyewole2 and Japhet G. Yakubu2 -- INTRODUCTION -- Pollutants and Their Classification -- Petroleum Hydrocarbons -- Heavy Metals -- Chemical Pollutants -- Synthetic Pesticides -- Industrial Dyes -- Pharmaceutical Products -- Effects of Pollutants in the Soil -- Effects of Pollutants in the Aquatic Environment -- Effects of Pollutants in the Air -- Bioremediation -- Bioremediation Techniques -- Biosparging -- Bioventing -- Bioaugmentation -- Biostimulation -- Ex situ -- Solid Phase -- Land Farming -- Composting -- Biopiles -- Slurry Phase -- Fungi -- Mycoremediation -- White Rot Fungi -- Enzyme System of WRF -- Lignin Peroxidase -- Manganese Peroxidase -- Versatile Peroxidase -- Laccase -- Cytochrome P450s Monooxygenase -- Mycoremediation of Pollutants -- Mycoremediation of Petroleum Hydrocarbons -- Mycoremediation of Dyes -- Mycoremediation of Pesticides -- Mycoremediation of Pharmaceutical Products -- Mycoremediation of Heavy Metal -- Advantages of Mycoremediation. , Limitations of Mycoremediation -- Nutrients -- Bioavailability of Pollutants -- Temperature -- Effects of pH -- Relative Humidity -- Toxicity of Pollutants -- Oxygen -- Moisture Content -- Presence of Contaminants -- CONCLUSION AND FUTURE PERSPECTIVE -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- REFERENCES -- Antifouling Nano Filtration Membrane -- Sonalee Das1,* and Lakshmi Unnikrishnan1 -- INTRODUCTION -- MEMBRANE FOULING -- Classification of Membrane Fouling -- Mechanism of Membrane Fouling -- Factors Affecting Membrane Fouling -- NANOFILTRATION MEMBRANES -- Mechanism of Action -- Characterization of NF Membranes -- Industrial Applications -- Challenges in NF Membranes -- Membrane Fouling -- Separation Between the Solutes -- Post-treatment of Concentrates -- Chemical Resistance -- Insufficient Rejection in Water Treatment -- Need for Modelling & -- Simulation Tools -- ANTIFOULING NANOFILTRATION (AF-NF) MEMBRANES -- Recent Progress in the Fabrication of Anti-Fouling Nanofiltration (NF) Membranes -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- Microbes and their Genes involved in Bioremediation of Petroleum Hydrocarbon -- Bhaskarjyoti Gogoi1, Indukalpa Das1, Shamima Begum1, Gargi Dutta1, Rupesh Kumar1 and Debajit Borah1,* -- INTRODUCTION -- TYPES OF BIOREMEDIATION STRATEGIES -- PHYSICAL METHOD FOR BIOREMEDIATION OF PETROLEUM HYDROCARBON -- CHEMICAL METHOD FOR BIOREMEDIATION OF PETROLEUM HYDROCARBON -- BIOLOGICAL METHODS -- EX-SITU BIOREMEDIATION -- In Situ Bioremediation -- Microbial Bioremediation Method -- ROLE OF BIOSURFACTANTS IN PETROLEUM HYDROCARBON DEGRADATION -- ROLE OF MICROBIAL ENZYMES AND RESPONSIBLE GENES IN HYDROCARBON DEGRADATION -- FACTORS AFFECTING BIOREMEDIATION OF PETROLEUM HYDROCARBONS -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST. , ACKNOWLEDGEMENT -- REFERENCES -- Application and Major Challenges of Microbial Bioremediation of Oil Spill in Various Environments -- Rustiana Yuliasni1, Setyo Budi Kurniawan2, Abudukeremu Kadier3,4,*, Siti Rozaimah Sheikh Abdullah2, Peng-Cheng Ma3,4, Bekti Marlena1, Nanik Indah Setianingsih1, Dongsheng Song3,5 and Ali Moertopo Simbolon1 -- INTRODUCTION -- NATURE AND COMPOSITION OF PETROLEUM CRUDE OIL -- BIOREMEDIATION AGENTS -- Bacteria as Bioremediation Agents of Hydrocarbon Contaminated Environment -- Fungal Bioremediation of Hydrocarbon Contaminated Environment -- Algae as Bioremediation Agent of Hydrocarbon Contaminated Environment -- Commercialized Product of Microbial Agents for Hydrocarbon Remediation -- APPLICATION STRATEGIES AND PRACTICES -- In-situ Bioremediation -- Ex-situ Bioremediation -- FACTOR AFFECTING BIOREMEDIATION -- Temperature -- Substances Bioavailability -- Oxygen or Alternate Electron Acceptors -- Nutrients -- MATRICES TO BE REMEDIATED -- Soil Bioremediation -- Water Bioremediation -- Sludge Bioremediation -- CONCLUSION AND FUTURE CHALLENGES -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- REFERENCES -- Bioremediation of Hydrocarbons -- Grace N. Ijoma1, Weiz Nurmahomed1, Tonderayi S. Matambo1, Charles Rashama1 and Joshua Gorimbo1,* -- INTRODUCTION -- Hydrocarbon Pollution Effects on Macrobiota -- Hydrocarbon Pollution Effects on Microbiota -- The Fate of Hydrocarbon Pollution in the Environment -- Weathering, Physical and Chemical Interactions with the Terrestrial Environment -- Weathering, Physical and Chemical Interactions within the Terrestrial Environment -- Reasons for Hydrocarbon Recalcitrance to Biodegradation -- Ecotoxicology: Consortia Stress Responses, Tolerance and Adaptation -- Rate-limiting Nutrients: Changes in Nitrogen Flux -- Changes in Microbial Population Dynamics. , Microbial Consortia Interactions Employed in the Degradation of Hydrocarbons.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Inorganic compounds-Analysis. ; Electronic books.
    Description / Table of Contents: This is the very first book on the highly promising topic of MXenes; focusing on their fundamental characteristics and properties, fabrication techniques and applications. Keywords: MXenes, Nanomaterials, Two-dimensional Materials, Transition Metal Carbides, Transition Metal Nitrides, Electrical Conductivity, Hydrophilicity, Chemical Stability, Catalysis, Membrane Separation, Supercapacitors, Hybrid-ion Capacitors, Batteries, Flexible electronics, Hydrogen Storage, Nanoelectronics, Sensors, Energy R&D, Environmental Applications, Electronic Devices, Biomedical Applications.
    Type of Medium: Online Resource
    Pages: 1 online resource (224 pages)
    Edition: 1st ed.
    ISBN: 9781644900253
    Series Statement: Materials Research Foundations Series ; v.51
    DDC: 543.0858
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- MXenes for Sensors -- 1. Introduction -- 2. Synthesis of MXenes -- 3. MXenes for sensing applications -- 3.1 Electronic sensors -- 3.2 Biosensing -- 4. Characterization -- 5. Final Remarks -- Acknowledgements -- References -- 2 -- A Newly Emerging MXene Nanomaterial for Environmental Applications -- 1. Introduction -- 2. Physiochemical properties of MXenes nanomaterials -- 2.1 Crystal structure -- 2.1.2 Surface chemical structure -- 2.1.3 Band gap structure -- 2.2 Synthesis of MXenes nanomaterials -- 3. MXenes for environmental application -- 3.1 Adsorption -- 3.1.1 Adsorption of organic pollutants -- 3.1.2 Adsorption of inorganic pollutants -- 3.1.3 Adsorption of gaseous pollutants -- 3.1.4 Adsorption of other pollutants -- 3.2 Photocatalysis -- 3.3 Antimicrobial activity -- 3.4 Membrane filtration -- Conclusion and remarks -- Acknowledgments -- References -- 3 -- Two-Dimensional MXene as a Promising Material for Hydrogen Storage -- 1. Introduction -- 2. Family of Mxenes -- 3. Structural properties of Mxenes -- 4. Preparation of Mxenes -- 5. Mxenes for hydrogen storage -- 6. Computational and theoretical study on hydrogen storage over MXenes -- 7. Experimental study of Mxenes -- Conclusion -- Acknowledgments -- References -- 4 -- MXenes for Electrocatalysis -- 1. Introduction -- 2. MXenes forHER -- 2.1 The mechanism of HER -- 2.2 MXene-based catalysts for HER -- 3. MXene for OER -- 3.1 The mechanism of OER -- 3.2 MXene-based catalysts for OER -- 4. MXene for NRR -- 4.1 The mechanism of NRR -- 4.2 MXene-based catalysts for NRR -- Conclusion and outlook -- References -- 5 -- MXenes Composites -- 1. Introduction -- 2. Significance of MXenes composites -- 3. MAX phases in MXenes -- 4. Processing of MXene composites -- 4.1 Synthesis of MXenes -- 4.2 Surface modifications. , 5. Structural and mechanical properties -- 6. Electronic properties -- 7. Surface state properties -- 8. Transport and optical properties -- 9. Magnetic properties -- 10. Applications of MXenes in different fields -- 10.1 Low work function emitters -- 10.2 Catalysts and photocatalysts for hydrogen evolution -- 10.3 Energy conversion for thermoelectric devices -- 10.4 Energy storage -- 10.5 Biomedical applications -- Conclusions -- References -- 6 -- MXenes for Supercapacitors -- 1. Introduction -- 2. Supercapacitor background -- 3. Synthesis approaches -- 3.1 MXene -- 3.2 Element doped MXenes -- 3.3 MXene-based nanocomposites -- 3.4 MXene quantum dots -- 4. Structures, properties and supercapacitor applications -- 4.1 Single/few-layered MXene-based supercapacitors -- 4.2 Element doped MXenes -- 4.3 MXene composites-based supercapacitors -- Summary and outlook -- References -- 7 -- MXenes for Sodium-Ion Batteries -- 1. Introduction -- 2. Na-ion batteries -- 3. Summary -- References -- 8 -- MXenes for Biomedical Applications -- 1. Introduction -- 2. MXenes as antibacterial agent -- 3. MXenes as biosensors -- 4. MXenes in bio-imaging -- 5. Therapeutic applications of MXenes -- Discussion -- References -- 9 -- MXene and its Sensing Applications -- 1. Introduction -- 2. MXenes based sensors -- 2.1 MXene for electrochemical (bio) sensing -- 2.2 MXenes for optical sensing -- 2.3 MXene for gas sensing -- 2.4 MXene for piezoresistive sensing -- Conclusion -- Abbreviations -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Quantum dots. ; Electronic books.
    Description / Table of Contents: The book provides a thorough survey of current research in quantum dots synthesis, properties, and applications.
    Type of Medium: Online Resource
    Pages: 1 online resource (360 pages)
    Edition: 1st ed.
    ISBN: 9781644901250
    Series Statement: Materials Research Foundations Series ; v.96
    DDC: 621.38152
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Water-Electrolysis. ; Electronic books.
    Description / Table of Contents: Aiming at the generation of hydrogen from water, electrochemical water splitting represents a promising clean technology for generating a renewable energy resource. Keywords: Electrochemical Water Splitting, Renewable Energy Resource, Electrocatalysts, Oxygen Evolution Reaction (OER), Noble Metal Catalysts, Earth-Abundant Metal Catalysts, MOF Catalysts, Carbon-based Nanocatalysts, Polymer Catalysts, Transition Metal-based Electrocatalysts, Fe-based Electrocatalysts, Co-based Electrocatalysts, Ni-based Electrocatalysts, Metal Free Catalysts, Transition-Metal Chalcogenides, Prussian Blue Analogues.
    Type of Medium: Online Resource
    Pages: 1 online resource (251 pages)
    Edition: 1st ed.
    ISBN: 9781644900451
    Series Statement: Materials Research Foundations Series ; v.59
    DDC: 665.81
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Transition Metal-Based Electrocatalysts for Oxygen-Evolution Reaction beyond Ni, Co, Fe -- 1. Introduction -- 2. Towards transition metal alloys beyond Ni, Co and Fe applied for OER -- 3. Metal oxides for OER beyond Ni, Co, and Fe -- 3.1 Transition metal binary oxide-based electrocatalyst -- 3.2 Perovskites oxides electrocatalysts -- 4. Transition-metals carbides, nitrides, and phosphides applied for OER -- 4.1 Carbides -- 4.2 Nitrides -- 4.3 Phosphides -- Conclusions -- References -- 2 -- Fe-Based Electrocatalysts for Oxygen-Evolution Reaction -- 1. Introduction -- 2. Mechanism of oxygen evolution reaction -- 3. Fe-based catalysts for OER -- 3.1 Fe-based oxides catalysts -- 3.2 Fe-based (oxy)hydroxides catalysts -- 3.3 Fe-based lamellar layered double hydroxide catalysts -- 3.4 Other Fe-based composites -- Conclusions and Outlook -- References -- 3 -- Co-Based Electrocatalysts for Hydrogen-Evolution Reaction -- 1. Introduction -- 2. Various Co-based electrocatalysts -- 2.1 Co metal, alloy, and their composites -- 2.2 Co nitrides -- 2.3 Co phosphides -- 2.4 Co oxide -- 2.5 Cobalt (Co) sulfides -- 2.6 Cobal selenides -- 2.7 Binary nonmetal cobalt compounds -- Conclusions and outlook -- References -- 4 -- Metal Free Catalysts for Water Splitting -- 1. Introduction -- 1.1 Hydrogen evolution reaction (HER) -- 1.2 Oxygen evolution reaction (OER) -- 2. Factors affecting the efficiency of electrochemical water splitting -- 3. Electrochemical matrices used for determining talent of the catalyst -- 4. Electrocatalysts for overall water splitting -- 5. Carbon based metal free catalyst -- 5.1 Graphene based electrocatalysts for water splitting -- 5.2 Carbon nanotube based electrocatalysts for water splitting. , 5.3 Graphitic carbon nitride (g-C3N4) based electrocatalysts for overall water splitting -- 6. Future aspects and outlook -- Reference -- 5 -- Ni-Based Electrocatalyst for Full Water Splitting -- 1. Introduction -- 2. Water splitting -- 2.1 Brief history and basics of water splitting -- 2.2 Few parameters related to t oxygen evolution reaction, hydrogen evolution reaction and catalytic activity -- 2.3 Mechanism of electrochemical water splitting -- 2.3.1 Hydrogen evolution reaction (HER) -- 2.3.2 Oxygen evolution reaction (OER) -- 2.4 Recent advances on materials and performance of Ni based materials for overall water splitting -- 2.4.1 Ni- based oxides and hydroxides -- 2.4.2 Ni-based phosphides -- 2.4.3 Ni-based nitrides -- 2.4.4 Ni-based sulfides -- 2.4.4 Ni-based selenides -- Conclusions -- Acknowledgement -- References -- 6 -- Transition-Metal Chalcogenides for Oxygen-Evolution Reaction -- 1. Introduction -- 1.1 Mechanism of oxygen evolution reaction (OER) -- 1.2 Kinetic parameters used to find the suitable catalysts for OER -- 1.2.1 Overpotential -- 1.2.2. Exchange current density -- 1.2.3 Tafel equation and Tafel plot -- 1.2.4 Electrochemical active surface area (ECSA) -- 1.2.5 Faraday efficiency (FE) -- 1.3 Experimental methods used to study the OER behavior and stability of catalysts -- 2. Transition metal chalcogenides as replacement of state-of-art catalyst for OER -- 2.1 Transition metal sulphide for oxygen evolution reaction -- 2.2 Transition metal selenide for oxygen evolution reaction -- 2.3 Transition metal telluride for oxygen evolution reaction -- Conclusion and Future prospective -- References -- 7 -- Interface-Engineered Electrocatalysts for Water Splitting -- 1. The surface/interface mechanism in photoelectrochemical water splitting. , 2. Enhanced photoelectrochemical water splitting performance by interface-engineered electrocatalysts -- 2.1 Impurity doping -- 2.2 Surface plasmon resonance effect -- 2.3 Z-scheme system -- References -- 8 -- Application of Prussian Blue Analogues and Related Compounds for Water Splitting -- 1. Introduction -- 2. The coordination chemistry of Prussian blue analogues and other metal cyanides -- 3. Crystal structure of Prussian blue analogues and related coordination polymers -- 4. Photo-induced charge transfer in Prussian blue analogues and related solids -- 5. Electrochemical behavior of PBAs in aqueous solutions -- 6. The water splitting reaction using transition metal cyanides -- 6.1 Oxygen evolution reaction (OER) -- 6.2 Hydrogen evolution reaction (HER) -- 6.3 Use as co-catalyst in photoelectrochemical cells -- Concluding remarks -- Acknowledgments -- References -- 9 -- Ni-Based Electrocatalysts for Oxygen Evolution Reaction -- 1. Introduction -- 2. The mechanism involved in oxygen evolution reaction and judging parameters -- 3. Nickel based OER catalysts -- 3.1 Ni-hydroxide based OER catalysts -- 3.2 Ni-oxide based OER catalysts -- 3.3 Ni-sulphides and selenides for OER -- Conclusion -- Acknowledgements -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Aerogels. ; Electronic books.
    Description / Table of Contents: The book focuses on aerogels for biomedical applications, thermal insulation, energy storage, fuel cells, batteries and environmental remediation.
    Type of Medium: Online Resource
    Pages: 1 online resource (193 pages)
    Edition: 1st ed.
    ISBN: 9781644901298
    Series Statement: Materials Research Foundations Series ; v.98
    DDC: 541.34513
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- Summary -- 1 -- Polymer Aerogels: Preparation and Potential for Biomedical Application -- 1. Introduction -- 2. Polysaccharides as a basis for aerogels production -- 2.1 Cellulose as the world's most abundant organic resource -- 2.2 Plant polysaccharide main starch -- 2.3 Other polysaccharides -- 3. Preparation of polymeric aerogels -- 3.1 Polymeric aerogels can be designed to have defined pores -- 4. Drying of polymeric aerogel -- 4.1 Supercritical drying -- 4.2 Freeze-drying -- 5. Biomedical applications -- 5.1 Chitosan aerogels may accelerate blood coagulation -- 5.2 Pectin aerogel can carry pharmaceuticals -- 5.3 Cellulose aerogel is used for wound healing -- 5.4 Alginate aerogel is thermogenic intelligent and pH sensitive -- Conclusions -- Acknowledgment -- References -- 2 -- Aerogels for Biomedical Applications -- 1. Introduction -- 2. Aerogels in biomedicine -- 2.1 Aerogels in drug delivery -- 2.2 Aerogels in biomedical implantable devices -- 2.3 Aerogels in tissue engineering and bone regeneration -- 2.4 Aerogels in biosensing -- 3. Future prospects and conclusions -- References -- 3 -- Bioaerogels: Synthesis Approaches, Biomedical Applications and Cell Uptake -- 1. Introduction -- 2. Bioaerogels synthesis -- 2.1 Chitin bioaerogels -- 2.2 Chitosan bioaerogels -- 2.3 Alginate and agar bioaerogels -- 2.4 Cellulose bioaerogels -- 3. Biomedical applications of bioaerogels -- 3.1 Bioaerogels can be used to support drug administration -- 3.2 Bioaerogels can be used as tissue engineering scaffolding -- 4. Biocompatibility, toxicity, biodegradability and intracellular absorption -- 4.1 Bioaerogels have biocompatibility and low toxicity -- 4.2 Bioaerogels are biodegradable and are absorbed via intracellular -- Conclusions -- Acknowledgment -- References -- 4. , Aerogels for Insulation Applications -- 1. Introduction -- 2. Aerogel as insulating material -- 3. Processing of insulation aerogel -- 4. Thermal insulation properties -- 4.1 Insulation of aerogel as composite material -- 4.1.1 Solid phase -- 4.1.2 Liquid phase -- 5. Applications of insulation aerogels -- Conclusions -- References -- 5 -- Aerogels as Catalyst Support for Fuel Cells -- 1. Introduction -- 2. Carbon based aerogels -- 2.1 Carbon aerogels -- 2.2 Graphene aerogels -- 2.3 Doped aerogels -- 2.4 Mesoporous carbon -- 3. Non-precious catalyst using aerogels as support for DMFC applications -- Conclusionand outlook -- References -- 6 -- Aerogels Utilizations in Batteries -- 1. Introduction -- 2. Types of batteries -- 2.1 Lead - acid battery -- 2.2 Metal - ion battery -- 2.3 Metal air battery -- 3.1 Carbon aerogel -- 3.2 Graphene Aerogel -- 3.3 Silicon aerogel -- 3.4 Metallic aerogel -- 3.5 Composite electrodes -- Conclusions -- References -- 7 -- Aerogels Materials for Applications in Thermal Energy Storage -- 1. Introduction -- 2. Current status of the aerogel in thermal storage -- Conclusions -- Acknowledgments -- References -- 8 -- Aerogels for Sensor Application -- 1. Introduction -- 2. Classification and physicochemical properties of aerogels -- 2.1 Inorganic aerogels -- 2.2 Oxide-based aerogels -- 2.3 Metallic aerogels (MAgs) -- 2.4 Carbon aerogels (CAgs) -- 2.5 Chalcogenide aerogels -- 2.6 Organic aerogels (OAgs) -- 2.7 Hybrid aerogels (HAgs) -- 3. Sensors application -- 3.1 Gas sensors -- 3.2 Gas-phase sensing -- 3.3 Water vapor sensor -- 3.4 Oxygen sensor -- 3.5 Pressure sensor -- 3.6 Strain sensor -- 3.7 Stress sensors -- 3.8 Hydrogen peroxide sensor -- 3.9 Electrochemical sensor -- Conclusions -- Acknowledgments -- References -- 9 -- Aerogels as Pesticides -- 1. Introduction -- 2. Uses in agriculture -- 3. Aerogels as acaricides. , 4. Aerogels as insecticides -- Conclusion -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...