GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (36)
  • DATA PANGAEA  (36)
Document type
  • Data  (36)
Source
  • DATA PANGAEA  (36)
Keywords
Publisher
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hauck, Judith; Völker, Christoph; Wolf-Gladrow, Dieter A; Laufkötter, Charlotte; Vogt, Meike; Aumont, Olivier; Bopp, Laurent; Buitenhuis, Erik Theodoor; Doney, Scott C; Dunne, John; Gruber, Nicolas; Hashioka, Taketo; John, Jasmin; Le Quéré, Corinne; Lima, Ivan D; Nakano, Hideyuki; Séférian, Roland; Totterdell, Ian J (2015): On the Southern Ocean CO2 uptake and the role of the biological carbon pump in the 21st century. Global Biogeochemical Cycles, 29(9), 1451-1470, https://doi.org/10.1002/2015GB005140
    Publication Date: 2023-01-13
    Description: We use a suite of eight ocean biogeochemical/ecological general circulation models from the MAREMIP and CMIP5 archives to explore the relative roles of changes in winds (positive trend of Southern Annular Mode, SAM) and in warming- and freshening-driven trends of upper ocean stratification in altering export production and CO2 uptake in the Southern Ocean at the end of the 21st century. The investigated models simulate a broad range of responses to climate change, with no agreement ona dominance of either the SAM or the warming signal south of 44° S. In the southernmost zone, i.e., south of 58° S, they concur on an increase of biological export production, while between 44 and 58° S the models lack consensus on the sign of change in export. Yet, in both regions, the models show an enhanced CO2 uptake during spring and summer. This is due to a larger CO 2 (aq) drawdown by the same amount of summer export production at a higher Revelle factor at the end of the 21st century. This strongly increases the importance of the biological carbon pump in the entire Southern Ocean. In the temperate zone, between 30 and 44° S all models show a predominance of the warming signal and a nutrient-driven reduction of export production. As a consequence, the share of the regions south of 44° S to the total uptake of the Southern Ocean south of 30° S is projected to increase at the end of the 21st century from 47 to 66% with a commensurable decrease to the north. Despite this major reorganization of the meridional distribution of the major regions of uptake, the total uptake increases largely in line with the rising atmospheric CO2. Simulations with the MITgcm-REcoM2 model show that this is mostly driven by the strong increase of atmospheric CO2, with the climate-driven changes of natural CO2 exchange offsetting that trend only to a limited degree (~10%) and with negligible impact of climate effects on anthropogenic CO2 uptake when integrated over a full annual cycle south of 30° S.
    Keywords: File content; Uniform resource locator/link to file; Uniform resource locator/link to image
    Type: Dataset
    Format: text/tab-separated-values, 27 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-06-21
    Keywords: Area/locality; BIOACID; Biological Impacts of Ocean Acidification; Calcium carbonate; Depth, bathymetric; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Gear; LATITUDE; LONGITUDE; Reference of data; Sample code/label
    Type: Dataset
    Format: text/tab-separated-values, 2842 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Meyer, Bettina; Freier, Ulrich; Grimm, Volker; Groeneveld, Jürgen; Hunt, Brian P V; Kerwath, Sven; King, Rob; Klaas, Christine; Pakhomov, Evgeny A; Melbourne-Thomas, Jess; Murphy, Eugene J; Thorpe, Sally; Stammerjohn, Sharon; Wolf-Gladrow, Dieter A; Auerswald, Lutz; Götz, Albrecht; Halbach, Laura; Jarman, Simon; Kawaguchi, So; Krumpen, Thomas; Meiners, Klaus M; Nehrke, Gernot; Ricker, Robert; Summer, Michael; Teschke, Mathias; Trebilco, Rowan; Yilmaz, Noyan (2017): The winter pack ice zone provides a sheltered but food-poor habitat for larval Antarctic krill. Nature Ecology & Evolution, https://doi.org/10.1038/s41559-017-0368-3
    Publication Date: 2023-08-01
    Description: A dominant Antarctic ecological paradigm suggests that winter sea ice is the feeding ground for krill larvae. However, several recent observations conflict with this hypothesis. Our study presents the first direct evidence that winter sea ice is actually a food-poor environment when compared to neighbouring open water regions. We found that complex under ice habitats are vital for larval krill, providing shelter from currents. During the day the larvae feed on the sparse ice-associated food but after sunset, they migrate into the water below the ice. This behaviour allows access to more food and promotes the dispersal of larvae to spring feeding grounds. Current larval krill overwintering and nursery habitats in the SW Atlantic are predicted to become ice-free in the future. This will lead to an enhanced food supply and faster larval development and growth but might increase the dispersal of larvae out of the SW Atlantic ecosystem.
    Type: Dataset
    Format: application/zip, 9 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hoppe, Clara Jule Marie; Klaas, Christine; Ossebaar, Sharyn; Soppa, Mariana A; Cheah, Wee; Laglera, Luis Miguel; Santos-Echeandía, Juan; Rost, Björn; Wolf-Gladrow, Dieter A; Bracher, Astrid; Hoppema, Mario; Strass, Volker H; Trimborn, Scarlett (2017): Controls of primary production in two phytoplankton blooms in the Antarctic Circumpolar Current. Deep Sea Research Part II: Topical Studies in Oceanography, 138, 63-73, https://doi.org/10.1016/j.dsr2.2015.10.005
    Publication Date: 2023-10-18
    Description: The Antarctic Circumpolar Current has a high potential for primary production and carbon sequestration through the biological pump. In the current study, two large-scale blooms observed in 2012 during a cruise with R.V. Polarstern were investigated with respect to phytoplankton standing stocks, primary productivity and nutrient budgets. While net primary productivity was similar in both blooms, chlorophyll a -specific photosynthesis was more efficient in the bloom closer to the island of South Georgia (39 °W, 50 °S) compared to the open ocean bloom further east (12 °W, 51 °S). We did not find evidence for light being the driver of bloom dynamics as chlorophyll standing stocks up to 165 mg/m² developed despite mixed layers as deep as 90 m. Since the two bloom regions differ in their distance to shelf areas, potential sources of iron vary. Nutrient (nitrate, phosphate, silicate) deficits were similar in both areas despite different bloom ages, but their ratios indicated more pronounced iron limitation at 12 °W compared to 39 °W. While primarily the supply of iron and not the availability of light seemed to control onset and duration of the blooms, higher grazing pressure could have exerted a stronger control toward the declining phase of the blooms.
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven | Supplement to: Driemel, Amelie; Fahrbach, Eberhard; Rohardt, Gerd; Beszczynska-Möller, Agnieszka; Boetius, Antje; Budéus, Gereon; Cisewski, Boris; Engbrodt, Ralph; Gauger, Steffen; Geibert, Walter; Geprägs, Patrizia; Gerdes, Dieter; Gersonde, Rainer; Gordon, Arnold L; Grobe, Hannes; Hellmer, Hartmut H; Isla, Enrique; Jacobs, Stanley S; Janout, Markus A; Jokat, Wilfried; Klages, Michael; Kuhn, Gerhard; Meincke, Jens; Ober, Sven; Østerhus, Svein; Peterson, Ray G; Rabe, Benjamin; Rudels, Bert; Schauer, Ursula; Schumacher, Stefanie; Schröder, Michael; Sieger, Rainer; Sildam, Jüri; Soltwedel, Thomas; Stangeew, Elena; Stein, Manfred; Strass, Volker H; Thiede, Jörn; Tippenhauer, Sandra; Veth, Cornelis; von Appen, Wilken-Jon; Weirig, Marie-France; Wisotzki, Andreas; Wolf-Gladrow, Dieter A; Kanzow, Torsten (2017): From pole to pole: 33 years of physical oceanography onboard R/V Polarstern. Earth System Science Data, 9(1), 211-220, https://doi.org/10.5194/essd-9-211-2017
    Publication Date: 2023-10-18
    Description: Measuring temperature and salinity profiles in the world's oceans is crucial to understanding ocean dynamics and its influence on the heat budget, the water cycle, the marine environment and on our climate. Since 1983 the German research vessel and icebreaker Polarstern has been the platform of numerous CTD (conductivity, temperature, depth instrument) deployments in the Arctic and the Antarctic. We report on a unique data collection spanning 33 years of polar CTD data. In total 131 data sets (1 data set per cruise leg) containing data from 10 063 CTD casts are now freely available. During this long period five CTD types with different characteristics and accuracies have been used. Therefore the instruments and processing procedures (sensor calibration, data validation, etc.) are described in detail. This compilation is special not only with regard to the quantity but also the quality of the data - the latter indicated for each data set using defined quality codes. The complete data collection includes a number of repeated sections for which the quality code can be used to investigate and evaluate long-term changes. Beginning with 2010, the salinity measurements presented here are of the highest quality possible in this field owing to the introduction of the OPTIMARE Precision Salinometer.
    Keywords: Author(s); AWI_PhyOce; Campaign; Date/time end; Date/time start; Method comment; Number of observations; Ocean and sea region; Persistent Identifier; Physical Oceanography @ AWI; Principal investigator; Quality code; Uniform resource locator/link to image; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 1695 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-15
    Description: Photosynthesis and respiration cause distinct chemical microenvironments within cyanobacterial aggregates. Here, we used microsensors and a diffusion–reaction model to characterize gradients in carbonate chemistry and investigate how these are affected by ocean acidification in Baltic vs. Pacific aggregates (Nodularia and Dolichospermum vs. Trichodesmium). Microsensor measurements of O2 and pH were performed under in situ and expected future pCO2 levels on Nodularia and Dolichospermum aggregates collected in the Baltic Sea. Under in situ conditions, O2 and pH levels within the aggregates covered ranges of 80–175% air saturation and 7.7–9.4 in dark and light, respectively. Carbon uptake in the light was predicted to reduce HCO3− by 100–150 μmol/L and CO2 by 3–6 μmol/L in the aggregate center compared to outside, inducing strong CO2 depletion (down to 0.5 μmol/L CO2 remaining in the center) even when assuming that HCO3− covered 80–90% of carbon uptake. Under ocean acidification conditions, enhanced CO2 availability allowed for significantly lower activity of carbon concentrating mechanisms, including a reduction of the contribution of HCO3− to carbon uptake by up to a factor of 10. The magnification of proton gradients under elevated pCO2 that was predicted based on a lower buffer capacity was observed in measurements despite a concurrent decrease in photosynthetic activity. In summary, we provide a quantitative image of the inorganic carbon environment in cyanobacterial aggregates under present-day and expected future conditions, considering both the individual and combined effects of the chemical and biological processes that shape these environments.
    Keywords: Acid-base regulation; Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bacteria; Baltic Sea; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Colorimetric; Cyanobacteria; Dolichospermum sp.; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Heterotrophic prokaryotes; Hydrogen ion concentration; Hydrogen ion concentration, standard deviation; Identification; Laboratory experiment; Light mode; Nodularia spumigena; OA-ICC; Ocean Acidification International Coordination Centre; Oxygen; Oxygen, standard deviation; Oxygen evolution; Oxygen evolution, standard deviation; Oxygen evolution per individual; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Potentiometric; Potentiometric titration; Ratio; Registration number of species; Respiration; Salinity; Single species; Species; station_B1; Temperate; Temperature, water; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 1101 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Heiden, Jasmin; Völkner, Christian; Jones, Elizabeth M; van De Poll, Willem H; Buma, Anita G J; Meredith, Michael P; de Baar, Hein J W; Bischof, Kai; Wolf-Gladrow, Dieter A; Trimborn, Scarlett (2019): Impact of ocean acidification and high solar radiation on productivity and species composition of a late summer phytoplankton community of the coastal Western Antarctic Peninsula. Limnology and Oceanography, 64(4), 1716-1736, https://doi.org/10.1002/lno.11147
    Publication Date: 2024-03-18
    Description: The Western Antarctic Peninsula (WAP), one of the most productive regions of the Southern Ocean, is currently undergoing rapid environmental changes such as ocean acidification (OA) and increased daily irradiances from enhanced surface‐water stratification. To assess the potential for future biological CO2 sequestration of this region, we incubated a natural phytoplankton assemblage from Ryder Bay, WAP, under a range of pCO2 levels (180 μatm, 450 μatm, and 1000 μatm) combined with either moderate or high natural solar radiation (MSR: 124 μmol photons/m**2/s and HSR: 435 μmol photons/ m**2/s, respectively). The initial and final phytoplankton communities were numerically dominated by the prymnesiophyte Phaeocystis antarctica, with the single cells initially being predominant and solitary and colonial cells reaching similar high abundances by the end. Only when communities were grown under ambient pCO2 in conjunction with HSR did the small diatom Fragilariopsis pseudonana outcompete P. antarctica at the end of the experiment. Such positive light‐dependent growth response of the diatom was, however, dampened by OA. These changes in community composition were caused by an enhanced photosensitivity of diatoms, especially F. pseudonana, under OA and HSR, reducing thereby their competitiveness toward P. antarctica. Moreover, community primary production (PP) of all treatments yielded similar high rates at the start and the end of the experiment, but with the main contributors shifting from initially large to small cells toward the end. Even though community PP of Ryder Bay phytoplankton was insensitive to the changes in light and CO2 availability, the observed size‐dependent shift in productivity could, however, weaken the biological CO2 sequestration potential of this region in the future.
    Keywords: (Diadinoxanthin + Diatoxanthin)/chlorophyll a ratio; (Diadinoxanthin + Diatoxanthin)/chlorophyll a ratio, standard deviation; Abundance; Alkalinity, total; Alkalinity, total, standard deviation; Antarctic; Aragonite saturation state; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon/Nitrogen ratio; Carbon/Nitrogen ratio, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Cell density, standard deviation; Chlorophyll a/particulate organic carbon ratio; Chlorophyll a/particulate organic carbon ratio, standard deviation; Community composition and diversity; Entire community; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Laboratory experiment; Light; Net primary production of carbon per particulate organic carbon; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate organic carbon, production, standard deviation; Particulate organic carbon production; Pelagos; pH; pH, standard deviation; Phosphate; Polar; Primary production/Photosynthesis; Primary production of carbon, standard deviation; Rothera_OA; Salinity; Silicate; Silicate, standard deviation; Species; Temperature, water; Thymidine uptake rate, standard deviation; Time point, descriptive; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 3185 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Strass, Volker H; Leach, Harry; Prandke, Hartmut; Donnelly, Matthew; Bracher, Astrid; Wolf-Gladrow, Dieter A (2016): The physical environmental conditions for biogeochemical differences along the Antarctic Circumpolar Current in the Atlantic Sector during late austral summer 2012. Deep Sea Research Part II: Topical Studies in Oceanography, 20 pp, https://doi.org/10.1016/j.dsr2.2016.05.018
    Publication Date: 2024-03-23
    Description: The physical and biological carbon pumps in the different hydrographic and biogeochemical regimes of the Atlantic Sector of the Southern Ocean are controlled by a series of coupled physical, chemical and biological processes and a project named Eddy-Pump was designed to study them. The Eddy Pump field campaign was carried out during RV Polarstern Cruise ANT-XXVIII/3 between January and March 2012. Particular emphasis was laid on the differences which occur along the axis of the Antarctic Circumpolar Current (ACC) with its associated mesoscale eddy field. The study sites were selected in order to represent (1) the central ACC with its regular separation in different frontal jets, investigated by a meridional transect along 10°E; (2) a large-scale bloom west of the Mid-Atlantic Ridge which lasted several months with conspicuous chlorophyll-poor waters to its immediate east studied by a three-dimensional mesoscale survey centred at 12°40'W; and (3) the Georgia Basin north of the island of South Georgia, which regularly features an extended and dense phytoplankton bloom, was investigated by a mesoscale survey centred at 38°12'W. While Eddy-Pump represents an interdisciplinary project by design, we here focus on describing the variable physical environment within which the different biogeochemical regimes developed. For describing the physical environment we use measurements of temperature, salinity and density, of mixed-layer turbulence parameters, of dynamic heights and horizontal current vectors, and of flow trajectories obtained from surface drifters and submerged floats. This serves as background information for the analyses of biological and chemical processes and of biogeochemical fluxes addressed by other papers in this issue. The section along 10°E between 44°S and 53°S showed a classical ACC structure with well-known hydrographic fronts, the Subantarctic Front (SAF) at 46.5°S, the Antarctic Polar Front (APF) split in two, at 49.25°S and 50.5°S, and the Southern Polar Front (SPF) at 52.5°S. Each front was associated with strong eastward flows. The West Mid-Atlantic Ridge Survey showed a weak and poorly resolved meander structure between the APF and the SPF. During the first eight days of the survey the oceanographic conditions at the Central Station at 12°40'W remained reasonably constant. However after that, conditions became more variable in the thermocline with conspicuous temperature inversions and interleavings and also a decrease in temperature in the surface layer. At the very end of the period of observation the conditions in the thermocline returned to being similar to those observed during the early part of the period with however the mixed layer temperature raised. The period of enhanced thermohaline variability was accompanied by increased currents. The Georgia Basin Survey showed a very strong zonal jet at its northern edge which connects to a large cyclonic meander that itself joins an anticyclonic eddy in the southeastern quadrant. The water mass contrasts in this survey were stronger than in the West Mid-Atlantic Ridge Survey, but similar to those met along 10°E with the exception that the warm and saline surface water typical of the northern side of the SAF was not covered by the Georgia Basin Survey. Mixed layers found during Eddy-Pump were typically deep, but varied between the three survey areas; the mean depths and standard variations of the mixed layer along the 10°E were 77.2±24.7 m, at the West Mid-Atlantic Ridge 66.7±17.7 m, and in the Georgia Basin 36.8±10.7 m.
    Keywords: AWI_PhyOce; Physical Oceanography @ AWI
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kranz, Sven A; Wolf-Gladrow, Dieter A; Nehrke, Gernot; Langer, Gerald; Rost, Björn (2010): Calcium carbonate precipitation induced by the growth of the marine cyanobacteria Trichodesmium. Limnology and Oceanography, 55(6), 2563-2569, https://doi.org/10.4319/lo.2010.55.6.2563
    Publication Date: 2024-03-15
    Description: In this laboratory study, we monitored the buildup of biomass and concomitant shift in seawater carbonate chemistry over the course of a Trichodesmium bloom under different phosphorus (P) availability. During exponential growth, dissolved inorganic carbon (DIC) decreased, while pH increased until maximum cell densities were reached. Once P became depleted, DIC decreased even further and total alkalinity (TA) dropped, accompanied by precipitation of aragonite. Under P-replete conditions, DIC increased and TA remained constant in the postbloom phase. A diffusion-reaction model was employed to estimate changes in carbonate chemistry of the diffusive boundary layer. This study demonstrates that Trichodesmium can induce precipitation of aragonite from seawater and further provides possible explanations about underlying mechanisms.
    Keywords: Alkalinity, Gran titration (Gran, 1950); Alkalinity, total; Aragonite saturation state; Auto-analyzer, Technicon Traacs 800; Bacteria; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a; Comment; Conductivity meter (WTW, Weilheim, Gemany); Cyanobacteria; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Experiment day; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Laboratory strains; Light:Dark cycle; Measured; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Phytoplankton; Radiation, photosynthetically active; Salinity; see reference(s); Single species; Species; Temperature, water; Trichodesmium erythraeum
    Type: Dataset
    Format: text/tab-separated-values, 2017 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Trimborn, Scarlett; Brenneis, Tina; Hoppe, Clara Jule Marie; Laglera, Luis Miguel; Norman, Louiza; Santos-Echeandía, Juan; Völkner, Christian; Wolf-Gladrow, Dieter A; Hassler, Christel S (2017): Iron sources alter the response of Southern Ocean phytoplankton to ocean acidification. Marine Ecology Progress Series, 578, 35-50, https://doi.org/10.3354/meps12250
    Publication Date: 2024-03-15
    Description: The rise in anthropogenic CO2 and the associated ocean acidification (OA) will change trace metal solubility and speciation, potentially altering Southern Ocean (SO) phytoplankton productivity and species composition. As iron (Fe) sources are important determinants of Fe bioavailability, we assessed the effect of Fe-laden dust versus inorganic Fe (FeCl3) enrichment under ambient and high pCO2 levels (390 and 900 μatm) in a naturally Fe-limited SO phytoplankton community. Despite similar Fe chemical speciation and net particulate organic carbon (POC) production rates, CO2-dependent species shifts were controlled by Fe sources. Final phytoplankton communities of both control and dust treatments were dominated by the same species, with an OA-dependent shift from the diatom Pseudo nitzschia prolongatoides towards the prymnesiophyte Phaeocystis antarctica. Addition of FeCl3 resulted in high abundances of Nitzschia lecointei and Chaetoceros neogracilis under ambient and high pCO2, respectively. These findings reveal that both the characterization of the phytoplankton community at the species level and the use of natural Fe sources are essential for a realistic projection of the biological carbon pump in the Fe-limited pelagic SO under OA. As dust deposition represents a more realistic scenario for the Fe-limited pelagic SO under OA, unaffected net POC production and dominance of P. antarctica can potentially weaken the export of carbon and silica in the future.
    Keywords: Abundance; Abundance, standard deviation; Alkalinity, total; Alkalinity, total, standard deviation; Antarctic; Aragonite saturation state; Bicarbonate ion; Biogenic particulate silica/Carbon, organic, particulate; Biogenic particulate silica/Carbon, organic, particulate, standard deviation; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, organic, particulate, net production; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Cell density, standard deviation; Community composition and diversity; Entire community; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth rate; Growth rate, standard deviation; Iron, chemically labile; Iron, dissolved; Iron, dissolved, inorganic; Iron, dissolved, standard deviation; Iron, inorganic, conditional stability constants; Iron, inorganic, conditional stability constants, standard deviation; Iron uptake/Carbon, organic, particulate; Iron uptake/Carbon, organic, particulate, standard deviation; Laboratory experiment; Ligand concentration; Ligand concentration, standard deviation; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard deviation; Micro-nutrients; Nitrate; Nitrate, standard deviation; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Other metabolic rates; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon per cell; Pelagos; pH; pH, standard deviation; Polar; Polar_front; Primary production/Photosynthesis; Salinity; Side coefficient of dissolved Fe-complex ligands; Temperature, water; Time in days; Time point, descriptive; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 4906 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...