GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (387)
Document type
  • Articles  (387)
Source
Publisher
Years
Topic
  • 21
    Publication Date: 2017-04-12
    Description: The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice. In this paper, a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity ( V s )-void ratio ( e ) of sandy soils, and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available. The detailed procedures of pre- and post-improvement liquefaction evaluations and stone column design are given. According to this approach, the required level of ground improvement will be met once the target V s of soil is raised high enough (i.e., no less than the critical velocity) to resist the given earthquake loading according to the CRR- V s relationship, and then this requirement is transferred to the control of target void ratio (i.e., the critical e ) according to the V s - e relationship. As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature, specific considerations of the densification mechanism and effect are given, and the effects of drainage and reinforcement of stone columns are also discussed. A case study of a thermal power plant in Indonesia is introduced, where the effectiveness of stone column improved ground was evaluated by the proposed V s -based method and compared with the SPT-based evaluation. This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.
    Print ISSN: 1671-3664
    Electronic ISSN: 1993-503X
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-12
    Description: In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. The proposed method is rigorous and efficient compared to a typical conversion method which merely computes surface integration of solid element nodal stresses to obtain cross-sectional forces. The meta-modeling theory ensures the rigorousness of proposed method by defining a proper distance between beam element and solid element solutions in a function space of continuum mechanics. Results of numerical verification test that is conducted with a simple cantilever beam are used to find the proper distance function for this conversion. Time history analysis of the main tunnel structure of a real ramp tunnel is considered as a numerical example for the proposed conversion method. It is shown that cross-sectional forces are readily computed for solid element solution of the main tunnel structure when it is converted to a beam element solution using the proposed method. Further, envelopes of resultant forces which are of primary importance for the purpose of design, are developed for a given ground motion at the end.
    Print ISSN: 1671-3664
    Electronic ISSN: 1993-503X
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-12
    Description: This paper reports on an investigation of the seismic response of base-isolated reinforced concrete buildings, which considers various isolation system parameters under bidirectional near-fault and far-fault motions. Three-dimensional models of 4-, 8-, and 12-story base-isolated buildings with nonlinear effects in the isolation system and the superstructure are investigated, and nonlinear response history analysis is carried out. The bounding values of isolation system properties that incorporate the aging effect of isolators are also taken into account, as is the current state of practice in the design and analysis of base-isolated buildings. The response indicators of the buildings are studied for near-fault and far-fault motions weight-scaled to represent the design earthquake (DE) level and the risk-targeted maximum considered earthquake (MCE R ) level. Results of the nonlinear response history analyses indicate no structural damage under DE-level motions for near-fault and far-fault motions and for MCE R -level far-fault motions, whereas minor structural damage is observed under MCE R -level near-fault motions. Results of the base-isolated buildings are compared with their fixed-base counterparts. Significant reduction of the superstructure response of the 12-story base-isolated building compared to the fixed-base condition indicates that base isolation can be effectively used in taller buildings to enhance performance. Additionally, the applicability of a rigid superstructure to predict the isolator displacement demand is also investigated. It is found that the isolator displacements can be estimated accurately using a rigid body model for the superstructure for the buildings considered.
    Print ISSN: 1671-3664
    Electronic ISSN: 1993-503X
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-12
    Description: The buildings’ capacity to maintain minimum structural safety levels during natural disasters, such as earthquakes, is recognisably one of the aspects that most influence urban resilience. Moreover, the public investment in risk mitigation strategies is fundamental, not only to promote social and urban and resilience, but also to limit consequent material, human and environmental losses. Despite the growing awareness of this issue, there is still a vast number of traditional masonry buildings spread throughout many European old city centres that lacks of adequate seismic resistance, requiring therefore urgent retrofitting interventions in order to both reduce their seismic vulnerability and to cope with the increased seismic requirements of recent code standards. Thus, this paper aims at contributing to mitigate the social and economic impacts of earthquake damage scenarios through the development of vulnerability-based comparative analysis of some of the most popular retrofitting techniques applied after the 1998 Azores earthquake. The influence of each technique individually and globally studied resorting to a seismic vulnerability index methodology integrated into a GIS tool and damage and loss scenarios are constructed and critically discussed. Finally, the economic balance resulting from the implementation of that techniques are also examined.
    Print ISSN: 1671-3664
    Electronic ISSN: 1993-503X
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-12
    Description: The seismic behavior of steel reinforced high strength and high performance concrete (SRHC) frame columns was investigated through pseudo-static experiments of 16 frame columns with various shear span ratios, axial compression ratios, concrete strengths, steel ratios and stirrup ratios. Three kinds of failure mechanisms are presented and the characteristics of experimental hysteretic curves and skeleton curves with different design parameters are discussed. The columns’ ductility and energy dissipation were quantitatively evaluated based on seismic resistance. The research results indicate that SRHC frame columns can withstand extreme bearing capacity, but the abilities of ductility and energy dissipation are inferior because of SRHC’s natural brittleness. As a result, the axial load ratio should be restricted and some construction measures adopted, such as increasing the stirrup ratio. This research established effect factors on the bearing capacity of SPHC columns. Finally, an algorithm for obtaining ultimate bearing capacity using the flexural failure mode is established based on a modified plane-section assumption. The authors also established equations to determine shearing baroclinic failure and shear bond failure based on the accumulation of the axial load force distribution ratio. The calculated results of shear bearing capacity for different failure modes were in good agreement with the experimental results.
    Print ISSN: 1671-3664
    Electronic ISSN: 1993-503X
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-12
    Description: Previous failure analyses of bridges typically focus on substructure failure or superstructure failure separately. However, in an actual bridge, the seismic induced substructure failure and superstructure failure may influence each other. Moreover, previous studies typically use simplified models to analyze the bridge failure; however, there are inherent defects in the calculation accuracy compared with using a detailed three-dimensional (3D) finite element (FE) model. Conversely, a detailed 3D FE model requires more computational costs, and a proper erosion criterion of the 3D elements is necessary. In this paper, a multi-scale FE model, including a corresponding erosion criterion, is proposed and validated that can significantly reduce computational costs with high precision by modelling a pseudo-dynamic test of an reinforced concrete (RC) pier. Numerical simulations of the seismic failures of a continuous RC bridge based on the multi-scale FE modeling method using LS-DYNA are performed. The nonlinear properties of the bridge, various connection strengths and bidirectional excitations are considered. The numerical results demonstrate that the failure of the connections will induce large pounding responses of the girders. The nonlinear deformation of the piers will aggravate the pounding damages. Furthermore, bidirectional earthquakes will induce eccentric poundings to the girders and different failure modes to the adjacent piers.
    Print ISSN: 1671-3664
    Electronic ISSN: 1993-503X
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-12
    Description: This study proposes a Green’s function, an essential representation of water-saturated ground under moving excitation, to simulate ground borne vibration from trains. First, general solutions to the governing equations of poroelastic medium are derived by means of integral transform. Secondly, the transmission and reflection matrix approach is used to formulate the relationship between displacement and stress of the stratified ground, which results in the matrix of the Green’s function. Then the Green’s function is combined into a train-track-ground model, and is verified by typical examples and a field test. Additional simulations show that the computed ground vibration attenuates faster in the immediate vicinity of the track than in the surrounding area. The wavelength of wheel-rail unevenness has a notable effect on computed displacement and pore pressure. The variation of vibration intensity with the depth of ground is significantly influenced by the layering of the strata soil. When the train speed is equal to the velocity of the Rayleigh wave, the Mach cone appears in the simulated wave field. The proposed Green’s function is an appropriate representation for a layered ground with shallow ground water table, and will be helpful to understand the dynamic responses of the ground to complicated moving excitation.
    Print ISSN: 1671-3664
    Electronic ISSN: 1993-503X
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-12
    Description: Ground vibration, as the most critical public hazard of blasting, has received much attention from the community. Many countries established national standards to suppress vibration impact on structures, but a world-accepted blasting vibration criterion on human safety is still missing. In order to evaluate human response to the vibration from blasting excavation of a large-scale rock slope in China, this study aims to suggest a revised criterion. The vibration frequency was introduced to improve the existing single-factor (peak particle velocity) standard recommended by the United States Bureau of Mines (USBM). The feasibility of the new criterion was checked based on field vibration monitoring and investigation of human reactions. Moreover, the air overpressure or blast effects on human beings have also been discussed. The result indicates that the entire zone of influence can be divided into three subzones: severe-annoyance, light-annoyance and perception zone according to the revised safety standard. Both the construction company and local residents have provided positive comments on this influence degree assessment, which indicates that the presented criterion is suitable for evaluating human response to nearby blasts. Nevertheless, this specific criterion needs more field tests and verifications before it can be
    Print ISSN: 1671-3664
    Electronic ISSN: 1993-503X
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-12
    Description: The Hybrid A-Frame Micropile/MSE (mechanically stabilized earth) Wall suitable for mountain roadways is put forward in this study: a pair of vertical and inclined micropiles goes through the backfill region of a highway MSE Wall from the road surface and are then anchored into the foundation. The pile cap and grade beam are placed on the pile tops, and then a road barrier is connected to the grade beam by connecting pieces. The MSE wall’s global stability, local stability and impact resistance of the road barrier can be enhanced simultaneously by this design. In order to validate the serviceability of the hybrid A-frame micropile/MSE wall and the reliability of the numerical method, scale model tests and a corresponding numerical simulation were conducted. Then, the seismic performance of the MSE walls before and after reinforcement with micropiles was studied comparatively through numerical methods. The results indicate that the hybrid A-frame micropile/MSE wall can effectively control earthquake-induced deformation, differential settlement at the road surface, bearing pressure on the bottom and acceleration by means of a rigid-soft combination of micropiles and MSE. The accumulated displacement under earthquakes with amplitude of 0.1‒0.5 g is reduced by 36.3%‒46.5%, and the acceleration amplification factor on the top of the wall is reduced by 13.4%, 15.7% and 19.3% based on 0.1, 0.3 and 0.5 g input earthquake loading, respectively. In addition, the earthquake-induced failure mode of the MSE wall in steep terrain is the sliding of the MSE region along the backslope, while the micropiles effectively control the sliding trend. The maximum earthquake-induced pile bending moment is in the interface between MSE and slope foundation, so it is necessary to strengthen the reinforcement of the pile body in the interface. Hence, it is proven that the hybrid A-frame micropile/MSE wall system has good seismic performance.
    Print ISSN: 1671-3664
    Electronic ISSN: 1993-503X
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-12
    Description: In this study, strong ground motion record (SGMR) selection based on Eta ( η ) as a spectral shape indicator has been investigated as applied to steel braced frame structures. A probabilistic seismic hazard disaggregation analysis for the definition of the target Epsilon ( ε ) and the target Eta ( η ) values at different hazard levels is presented, taking into account appropriately selected SGMR’s. Fragility curves are developed for different limit states corresponding to three representative models of typical steel braced frames having significant irregularities in plan, by means of a weighted damage index. The results show that spectral shape indicators have an important effect on the predicted median structural capacities, and also that the parameter η is a more robust predictor of damage than searching for records with appropriate ε values.
    Print ISSN: 1671-3664
    Electronic ISSN: 1993-503X
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...