GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (395)
Document type
Language
Years
Year
  • 11
    Publication Date: 2020-12-14
    Description: Natural hazards and climate-related disasters disregard political borders, where additional barriers can complicate mitigation, response and recovery efforts within and between the sectors of Climate Change Adaptation (CCA) and Disaster Risk Reduction (DRR). The ESPREssO Project (Enhancing Synergies for Disaster Prevention in the European Union) aims to improve management of transboundary disasters by encouraging closer synergies between the CCA and DRR communities. Using targeted stakeholder interviews, questionnaires, Think Tank discussions and purpose-built serious games, ESPREssO draws on both CCA and DRR stakeholder experiences and informed perspectives in order to identify current gaps. Set within a fictitious border zone, ESPREssO’s RAMSETE II serious game challenges CCA and DRR stakeholders in making coordinated decisions before, during and after a simulated disaster, in protection of population and critical infrastructure. Results highlight the essential role of local governance mechanisms as the sharp end of the policy wedge, with current examples of proactivity that require to be championed and supported at national level in order to thrive. These good practice examples reflect the fact that transboundary settings, despite their challenges, act as fertile ground for mutual growth, offering opportunities for CCA and DRR communities to find innovative ways to cooperate and unite in developing synergies and strengthening their mutual efforts towards resilience. Stakeholders emphasise a need to invest more resources in informal cooperation and call on policy makers to recognise that each border zone raises its own unique set of complex challenges that requires flexibility and special consideration by transboundary authorities in management of disasters.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-10-20
    Description: The flanking regions of Guaymas Basin, a young marginal rift basin located in the Gulf of California, are covered with thick sediment layers that are hydrothermally altered due to magmatic intrusions. To explore environmental controls on microbial community structure in this complex environment, we analyzed site- and depth-related patterns of microbial community composition (bacteria, archaea, and fungi) in hydrothermally influenced sediments with different thermal conditions, geochemical regimes, and extent of microbial mats. We compared communities in hot hydrothermal sediments (75-100°C at ~40 cm depth) covered by orange-pigmented Beggiatoaceae mats in the Cathedral Hill area, temperate sediments (25-30°C at ~40 cm depth) covered by yellow sulfur precipitates and filamentous sulfur oxidizers at the Aceto Balsamico location, hot sediments (〉115°C at ~40 cm depth) with orange-pigmented mats surrounded by yellow and white mats at the Marker 14 location, and background, non-hydrothermal sediments (3.8°C at ~45 cm depth) overlain with ambient seawater. Whereas bacterial and archaeal communities are clearly structured by site-specific in-situ thermal gradients and geochemical conditions, fungal communities are generally structured by sediment depth. Unexpectedly, chytrid sequence biosignatures are ubiquitous in surficial sediments whereas deeper sediments contain diverse yeasts and filamentous fungi. In correlation analyses across different sites and sediment depths, fungal phylotypes correlate to each other to a much greater degree than Bacteria and Archaea do to each other or to fungi, further substantiating that site-specific in-situ thermal gradients and geochemical conditions that control bacteria and archaea do not extend to fungi.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-12-10
    Description: Precision agriculture, as part of modern agriculture, thrives on an enormously growing amount of information and data for processing and application. The spatial data used for yield forecasting or the delimitation of management zones are very diverse, often of different quality and in different units to each other. For various reasons, approaches to combining geodata are complex, but necessary if all relevant information is to be taken into account. Data fusion with belief structures offers the possibility to link geodata with expert knowledge, to include experiences and beliefs in the process and to maintain the comprehensibility of the framework in contrast to other “black box” models. This study shows the possibility of dividing agricultural land into management zones by combining soil information, relief structures and multi-temporal satellite data using the transferable belief model. It is able to bring in the knowledge and experience of farmers with their fields and can thus offer practical assistance in management measures without taking decisions out of hand. At the same time, the method provides a solution to combine all the valuable spatial data that correlate with crop vitality and yield. For the development of the method, eleven data sets in each possible combination and different model parameters were fused. The most relevant results for the practice and the comprehensibility of the model are presented in this study. The aim of the method is a zoned field map with three classes: “low yield”, “medium yield” and “high yield”. It is shown that not all data are equally relevant for the modelling of yield classes and that the phenology of the plant is of particular importance for the selection of satellite images. The results were validated with yield data and show promising potential for use in precision agriculture.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    In:  Proceedings of the 5th International Young Earth Scientists (YES) Congress “Rocking Earth’s Future”
    Publication Date: 2021-09-05
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-02-01
    Description: The aim of the present work was to unravel which environmental drivers govern the dynamics of toxic dinoflagellate abundance as well as their associated paralytic shellfish toxins (PSTs), diarrhetic shellfish toxins (DSTs) and pectenotoxin-2 (PTX2) in Ambon Bay, Eastern Indonesia. Weather, biological and physicochemical parameters were investigated weekly over a 7-month period. Both PSTs and PTX2 were detected at low levels, yet they persisted throughout the research. Meanwhile, DSTs were absent. A strong correlation was found between total particulate PST and Gymnodinium catenatum cell abundance, implying that this species was the main producer of this toxin. PTX2 was positively correlated with Dinophysis miles cell abundance. Vertical mixing, tidal elevation and irradiance attenuation were the main environmental factors that regulated both toxins and cell abundances, while nutrients showed only weak correlations. The present study indicates that dinoflagellate toxins form a potential environmental, economic and health risk in this Eastern Indonesian bay.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-06-29
    Description: Since the beginning of the industrialization, uncontrolled greenhouse gas emission led to a distinct temperature increase on earth. Arctic environments are projected to experience the most severe changes due to climate change. Higher atmospheric temperatures caused already various environmental changes, for example a decrease in Arctic sea ice of 49 % (1979-2000) and increasing carbon dioxide concentrations which reduced the sea surface pH. A reduced sea ice formation will strengthen the summer stratification of warm, oxygen poor on top of cold, oxygen rich water masses, which may consequently cause local hypoxia in ground water layers. As a result, the deep cold water layers do not receive oxygen-rich water and oxygen consumption extends over more than one season. This can lead to local hypoxia in the ground water layers of the protected fjords. Especially endangered of this long-lasting stratification in winter are the deep fjord systems of the Svalbard archipelago. In this region, the change of winter temperatures from 1961–90 corresponded to an increase of 0.6 °C per decade. Corresponding, an additional increase of 0.9 °C per decade is projected for 2071–2100. Thus, the present study investigates the hypoxia tolerance of Polar cod, Boreogadus saida, one of the main Arctic key species. Therefore, different performance parameters were determined. The respiratory capacity as well as the swimming performance under declining oxygen concentrations were measured in two different experimental setups. A sample size of 30 Polar cod with similar body length and weight were chosen. All individuals were used several times during the experiments. First, the routine (RMR) and standard metabolic rate (SMR) were determined via flow-through respirometry. The calculated SMR for Polar cod accounted 0.44 μmol O2/g∙h. The RMR followed an oxygen regulating pattern, indicating that aerobic metabolic pathways such as lipid oxidation were used, rather than anaerobic pathways. This implies a relatively small contribution of anaerobic metabolism to the energy production in B. saida. This was confirmed in the swim tunnel experiments. However, Ugait (the speed at which the fish changed to anaerobically fuelled swimming) was not significantly affected by hypoxia, the total number of bursts (p = 0.025) and total active swimming time (p = 0.017) significantly decreased with decreasing oxygen saturation. The loss of anaerobic swimming capacity due to hypoxia may endanger this species in regard to predator-prey-interactions and loss of escape reactions. Under exercise Polar cod was able to up-regulate its maximum metabolic rate (MMR) until a threshold of 45 % PO2 was reached. Afterwards, the oxygen consumption significantly decreased with decreasing oxygen concentrations. Throughout both experiments neither RMR nor MMR decreased below SMR level. Furthermore, the present study revealed that Polar cod is an extremely hypoxia tolerant fish species, which is able to handle oxygen saturations down to a Pcrit of 4.81 % PO2. This outstanding capability could give the otherwise rather disadvantaged fish species an advantage under changing climate conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Thesis , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-03-28
    Description: Since the beginning of the industrialization, uncontrolled greenhouse gas emission led to a distinct temperature increase on earth. Arctic environments are projected to experience the most severe changes due to climate change. Higher atmospheric temperatures caused already various environmental changes, for example a decrease in Arctic sea ice of 49 % (1979-2000) and increasing carbon dioxide concentrations which reduced the sea surface pH. A reduced sea ice formation will strengthen the summer stratification of warm, oxygen poor on top of cold, oxygen rich water masses, which may consequently cause local hypoxia in ground water layers. As a result, the deep cold water layers do not receive oxygen-rich water and oxygen consumption extends over more than one season. This can lead to local hypoxia in the ground water layers of the protected fjords. Especially endangered of this long-lasting stratification in winter are the deep fjord systems of the Svalbard archipelago. In this region, the change of winter temperatures from 1961–90 corresponded to an increase of 0.6 °C per decade. Corresponding, an additional increase of 0.9 °C per decade is projected for 2071–2100. Thus, the present study investigates the hypoxia tolerance of Polar cod, Boreogadus saida, one of the main Arctic key species. Therefore, different performance parameters were determined. The respiratory capacity as well as the swimming performance under declining oxygen concentrations were measured in two different experimental setups. A sample size of 30 Polar cod with similar body length and weight were chosen. All individuals were used several times during the experiments. First, the routine (RMR) and standard metabolic rate (SMR) were determined via flow-through respirometry. The calculated SMR for Polar cod accounted 0.44 μmol O2/g∙h. The RMR followed an oxygen regulating pattern, indicating that aerobic metabolic pathways such as lipid oxidation were used, rather than anaerobic pathways. This implies a relatively small contribution of anaerobic metabolism to the energy production in B. saida. This was confirmed in the swim tunnel experiments. However, Ugait (the speed at which the fish changed to anaerobically fuelled swimming) was not significantly affected by hypoxia, the total number of bursts (p = 0.025) and total active swimming time (p = 0.017) significantly decreased with decreasing oxygen saturation. The loss of anaerobic swimming capacity due to hypoxia may endanger this species in regard to predator-prey-interactions and loss of escape reactions. Under exercise Polar cod was able to up-regulate its maximum metabolic rate (MMR) until a threshold of 45 % PO2 was reached. Afterwards, the oxygen consumption significantly decreased with decreasing oxygen concentrations. Throughout both experiments neither RMR nor MMR decreased below SMR level. Furthermore, the present study revealed that Polar cod is an extremely hypoxia tolerant fish species, which is able to handle oxygen saturations down to a Pcrit of 4.81 % PO2. This outstanding capability could give the otherwise rather disadvantaged fish species an advantage under changing climate conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Thesis , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-04-02
    Description: In the past decade, several international efforts developed to address urgent societal issues have been identified through, for example, the United Nations 2030 Agenda for Sustainable Development and its associated 17 Sustainable Development Goals and the United Nations Decade of Ocean Science for Sustainable Development (2021–2030). These worthy efforts will bring ocean science research to bear on problems that need attention in the short term. Yet, there is also a continuing need at the international level to support fundamental ocean science and solve methodological issues over the long term. While knowledge needs to be created before it can be applied, national and international science strategy documents often do not mention the need to maintain the health of the basic science enterprise. We argue that international organizations designed to create knowledge must be maintained and strengthened to inform decisions on how to allocate funding for generating knowledge about the ocean versus solving ocean problems. We use the ocean iron cycle as an example of the benefits of using such a “bottom-up” approach to knowledge generation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-12-14
    Description: The Bakken Shale and underlying Three Forks Formation is an important oil and gas reservoir in the United States. The hydrocarbon resources in this region are accessible using unconventional oil and gas extraction methods, including horizontal drilling and hydraulic fracturing. However, the geochemistry and microbiology of this region are not well understood, although they are known to have major implications for productivity and water management. In this study, we analyzed the produced water from 14 unconventional wells in the Bakken Shale using geochemical measurements, quantitative PCR (qPCR), and 16S rRNA gene sequencing with the overall goal of understanding the complex dynamics present in hydraulically fractured wells. Bakken Shale produced waters from this study exhibit high measurements of total dissolved solids (TDS). These conditions inhibit microbial growth, such that all samples had low microbial loads except for one sample (well 11), which had lower TDS concentrations and higher 16S rRNA gene copies. Our produced water samples had elevated chloride concentrations typical of other Bakken waters. However, they also contained a sulfate concentration trend that suggested higher occurrence of sulfate reduction, especially in wells 11 and 18. The unique geochemistry and microbial loads recorded for wells 11 and 18 suggest that the heterogeneous nature of the producing formation can provide environmental niches with conditions conducive for microbial growth. This was supported by strong correlations between the produced water microbial community and the associated geochemical parameters including sodium, chloride, and sulfate concentrations. The produced water microbial community was dominated by 19 bacterial families, all of which have previously been associated with hydrocarbon-reservoirs. These families include Halanaerobiaceae, Pseudomonadaceae, and Desulfohalobiaceae which are often associated with thiosulfate reduction, biofilm production, and sulfate reduction, respectively. Notably, well 11 was dominated by sulfate reducers. Our findings expand the current understanding of microbial life in the Bakken region and provide new insights into how the unique produced water conditions shape microbial communities. Finally, our analysis suggests that produced water chemistry is tightly linked with microbiota in the Bakken Shale and shows that additional research efforts that incorporate coupled microbial and geochemical datasets are necessary to understand this ecosystem.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-05-19
    Description: Para evaluar el comportamiento del sistema deltaico del río Mira se implementaron modelos de: (1) propagación de marea y (2) propagación y refracción de oleaje. Para analizar la propagación mareal se procesaron series sintéticas de nivel del mar generadas por modelos numéricos globales y la serie histórica del mareógrafo de Buenaventura (1953-2000). Para caracterizar la dinámica del oleaje se analizó y propagó una serie de oleaje (1979–2000) en aguas profundas con información de altura de ola significante (HS), periodo pico (TP) y dirección dominante (DP). La marea es semi-diurna con rangos promedio de 2.46 y 2.58m. El oleaje proviene principalmente del SW–SWW, con alturas significativas que varían entre 0.25 y 2.23m, y periodos pico entre 5 y 23s. La implementación de modelos numéricos permite evaluar escenarios oceanográficos como base para la toma de decisiones en un contexto de manejo integral de zonas costeras.
    Description: Tide propagation, and wave propagation-refraction numerical models were implemented to asses Mira’s River delta system dynamics. In this study we analyze tide propagation by looking at sea level synthetic data and records from Buenaventura tide gauge (1953-2000). Wave data from deep waters (1979-2000), including significant wave height (HS ), peak period (TP ) and dominant direction (DP ) records, was evaluated and propagated to shallow waters to characterize wave dynamics. Tide’s behavior is semi-diurnal with mean ranges of 2.46 y 2.58m. Waves comes from SW – SWW mainly, with significant wave height between 0.25 and 2.23m., and peak periods from of 5 to 23 s. The implementation of numerical models allows the evaluation of different oceanographic scenarios as a ground for costal management decision-making processes
    Description: Published
    Keywords: Modelos hidrodinámicos ; Nivel del mar ; Parámetros de oleaje ; Procesos hidrodinámicos ; ASFA_2015::G::Geodynamics ; ASFA_2015::H::Hydrology ; ASFA_2015::P::Physical oceanography
    Repository Name: AquaDocs
    Type: Journal Contribution , Not Known
    Format: Pp.31-48
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...