GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (18)
  • Dessau-Roßlau : Umweltbundesamt  (17)
  • Alfred Wegener Institute for Polar and Marine Research  (11)
  • 1
    Publication Date: 2023-09-27
    Description: 〈jats:p〉Anthropogenic climate change is altering global biogeographical patterns. However, it remains difficult to quantify how bioregions are changing because pre‐industrial records of species distributions are rare. Marine microfossils, such as planktonic foraminifera, are preserved in seafloor sediments and allow the quantification of bioregions in the past. Using a recently compiled data set of pre‐industrial species composition of planktonic foraminifera in 3802 worldwide seafloor sediments, we employed multivariate and statistical model‐based approaches to study spatial turnover in order to 1) quantify planktonic foraminifera bioregions and 2) understand the environmental drivers of species turnover. Four latitudinally banded bioregions emerge from the global assemblage data. The polar and temperate bioregions are bi‐hemispheric, supporting the idea that planktonic foraminifera species are not limited by dispersal. The equatorial bioregion shows complex longitudinal patterns and overlaps in sea surface temperature (SST) range with the tropical bioregion. Compositional‐turnover models (Bayesian bootstrap generalised dissimilarity models) identify SST as the strongest driver of species turnover. The turnover rate is constant across most of the SST gradient, showing no SST threshold values with rapid shifts in species composition, but decelerates above 25°C, suggesting SST is less predictive of species composition in warmer waters. Other environmental predictors affect species turnover non‐linearly, and their importance differs across regions. In the Pacific ocean, net primary productivity below 500 mgC m〈jats:sup〉−2〈/jats:sup〉 day〈jats:sup〉−1〈/jats:sup〉 drives fast compositional change. Water depth values below 3000 m (which affect calcareous microfossil preservation) increasingly drive changes in species composition among death assemblages in the Pacific and Indian oceans. Together, our results suggest that the dynamics of planktonic foraminifera bioregions are expected to be highly responsive to climate change; however, at lower latitudes, environmental drivers other than SST may affect these dynamics.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Marine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task. To guide policy-making and make projections of the future of the marine biosphere, it is essential to understand biological responses at physiological, evolutionary and ecological levels. Here, we contrast and compare different approaches to multiple driver experiments that aim to elucidate biological responses to a complex matrix of ocean global change. We present the benefits and the challenges of each approach with a focus on marine research, and guidelines to navigate through these different categories to help identify strategies that might best address research questions in fundamental physiology, experimental evolutionary biology and community ecology. Our review reveals that the field of multiple driver research is being pulled in complementary directions: the need for reductionist approaches to obtain process-oriented, mechanistic understanding and a requirement to quantify responses to projected future scenarios of ocean change. We conclude the review with recommendations on how best to align different experimental approaches to contribute fundamental information needed for science-based policy formulation.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research
    In:  EPIC3Berichte zur Polar- und Meeresforschung (Reports on Polar and Marine Research), Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 543, 235 p., ISSN: 1618-3193
    Publication Date: 2018-09-12
    Description: SummaryThe aim of this study was to identify scientific criteria and to acquire performance data for the development of mariculture in the context of sustainable multifunctional use of offshore space and natural resources.In connection with current plans for a massive expansion of wind farms in offshore areas of the North Sea, the idea emerged to combine these with the installation of extensive mariculture for bivalves and macroalgae. Since offshore wind farms provide safety from shipping and infrastructure for attachment and service support, the opportunity for a multiple-use concept presented itself. However, prior to such a multifunctional development, it is necessary to determine the appropriate biological, technological and management requirements as well as the performance characteristics that would allow the employment of favourable and cost-effective methodologies. To this end, spezial focus was placed on the combination of extensive offshore shellfish and seaweed farming at exposed sites within the proposed offshore wind farms.This thesis deals in detail with1. the effects of abiotic and biotic factors on the growth potential of indigenous macroalgae and bivalves in extensive mariculture systems exposed to the stressful conditions of offshore habitats: (a) effects of physical forces on the cultivated species, (b) various parameters characterising the growth performance of species, (c) testing these parameters while using a variety of substrates and technical setups, (d) survival and health conditions, (e) recruitment, (f) parasite infestation of mussels in relation to inshore and offshore exposure, and (g) site-specific responses of the species to the various harsh offshore environments,2. the interaction between physical offshore processes and man-made structures in areas of the German North Sea Territory where mariculture has potential,3. the conditions for possible combination of mariculture systems with offshore wind farms in terms of the legal framework and possible management strategies, and4. the socio-economic and legal consequences and interactions for offshore mussel farming with the existing conventional inshore bottom culture activities.The research locations were specifically selected sites in the offshore region of the German Bight, mainly in the outer estuary of the River Weser, the offshore waters off the Island of Helgoland, several offshore areas where wind farms are planned, and habitats along the northern part of the Island of Sylt.In this yet relatively young research field the performance of different offshore culture systems with attached macroalgae (Laminaria saccharina) and blue mussels (Mytilus edulis) was assessed at monthly sampling intervals. These procedures were carried out using research vessels, boats and scuba surveys, while determining morphometric parameters (e.g. length, width, thickness) as well as weight for growth analysis of mussels and seaweeds. Furthermore, the condition index, the meat content and the degree of parasite infestation of blue mussels were determined. The abundance of mussel larvae in the water column and the resulting settlement success of post-larvae on various spat collectors were investigated. Seaweed studies included attachment strength, breaking and drag forces on kelp sporophytes in order to describe the resistance of cultivated Laminarians to high energy environments. Additional assessment criteria were biochemical parameters (e.g. chlorophyll-, nutrient-, POC- and TON-concentrations and their ratios) to describe the food availability for mussels and the nutrient composition for algal growth as well as oceanographic parameters (currents, waves, swell, salinity, temperature, light attenuation) to describe the wave climate and current velocities of the study sites in the offshore environment. Technical studies comprised two system designs (longline, ring structure) of various set ups (submerged or floating mode) in different locations (offshore or inshore) to find an appropriate culture design to sustain growth and survival of cultivated species. Further, a specially designed offshore spat collector was used for settlement investigations of mussel post larvae. Some fundamental studies were carried out in order to pave the way for the realisation of open ocean aquaculture in offshore wind farms (e.g. multifunctional use of offshore habitats in terms of avoidance of stakeholder conflicts, the legal framework for such activities in coastal areas and in the Exclusive Economic Zone (EEZ), the multi-use concept in terms of integrated coastal zone management).Laminaria saccharina showed sufficient length increments in offshore habitats growing on a submerged ring system. It could be demonstrated by drag and breaking-/dislodgement force experiments that algae were capable of resisting the high-energy environment of the North Sea. The concentration of mussel larvae in the water column decreased offshore and resulted in a low settlement success while at the same time infestation load decreased and was lacking at offshore suspended collectors. The three system designs showed different results. While the offshore ring proved to be superior for seaweed cultivation under the harsh conditions, the longline showed some major drawbacks in terms of materials used, design and installation modes (submerged or floating). The spat collector largely withstood the harsh hydrodynamic conditions of the North Sea. The hitherto fragmented legal framework for the offshore waters was found to be one of the key constraints for the successful implementation of multifunctional use schemes. However, participation of all involved stakeholders may provide a window of opportunity to turn the existing lack of offshore regulations into a positive momentum, as scope exists to move with the development of new offshore co-management concepts beyond existing management approaches.Whether such offshore installations would provide sufficient economic returns could not be answered yet, as experience on the maintenance of offshore wind farms is lacking so far.However, the discovery that Laminaria saccharina resists offshore forces and shows sufficient length increments and mussels growing in offshore habitats are not affected by parasites may provide a key incentive for positive commercial use.It thus can be shown that there is a high potential for farming the deep blue in the German EEZ, provided that some of the constraints, of which the lack of legal framework and technical aspects seems to be most severe, are resolved in the near future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Berichte zur Polar- und Meeresforschung" , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research
    In:  EPIC3Berichte zur Polar- und Meeresforschung (Reports on Polar and Marine Research), Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 560, 228 p., ISSN: 1618-3193
    Publication Date: 2018-09-07
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Berichte zur Polar- und Meeresforschung" , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research
    In:  EPIC3Berichte zur Polarforschung (Reports on Polar Research), Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 342, 245 p., ISSN: 0176-5027
    Publication Date: 2018-09-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Berichte zur Polar- und Meeresforschung" , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: In nature, insects concurrently face multiple environmental stressors, a scenario likely increasing with climate change. Integrated stress resistance (ISR) thus often improves fitness and could drive invasiveness, but how physiological mechanisms influence invasion has lacked examination. Here, we investigated cross tolerance to abiotic stress factors which may influence range limits in the South American tomato pinworm – a global invader that is an ecologically and socially damaging crop pest. Specifically, we tested the effects of prior rapid cold- and heat-hardening (RCH and RHH), fasting and desiccation on cold and heat tolerance traits, as well as starvation and desiccation survivability between T. absoluta life stages. Acclimation effects on critical thermal minima (CTmin) and maxima (CTmax) were inconsistent, showing significantly deleterious effects of RCH on adult CTmax and CTmin and, conversely, beneficial acclimation effects of RCH on larval CTmin. While no beneficial effects of desiccation acclimation were recorded for desiccation tolerance, fasted individuals had significantly higher survival in adults, whereas fasting negatively affected larval tolerances. Furthermore, fasted and desiccation acclimated adults had significantly higher starvation tolerance, showing strong evidence for cross-tolerance. Our results show context-dependent ISR traits that may promote T. absoluta fitness and competitiveness. Given the frequent overlapping occurrence of these divergent stressors, ISR reported here may thus partly elucidate the observed rapid global spread of T. absoluta into more stressful environments than expected. This information is vital in determining the underpinnings of multi-stressor responses, which are fundamental in forecasting species responses to changing environments and management responses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Coastal oceans are particularly affected by rapid and extreme environmental changes with dramatic consequences for the entire ecosystem. Seagrasses are key ecosystem engineering or foundation species supporting diverse and productive ecosystems along the coastline that are particularly susceptible to fast environmental changes. In this context, the analysis of phenotypic plasticity could reveal important insights into seagrasses persistence, as it represents an individual property that allows species’ phenotypes to accommodate and react to fast environmental changes and stress. Many studies have provided different definitions of plasticity and related processes (acclimation and adaptation) resulting in a variety of associated terminology. Here, we review different ways to define phenotypic plasticity with particular reference to seagrass responses to single and multiple stressors. We relate plasticity to the shape of reaction norms, resulting from genotype by environment interactions, and examine its role in the presence of environmental shifts. The potential role of genetic and epigenetic changes in underlying seagrasses plasticity in face of environmental changes is also discussed. Different approaches aimed to assess local acclimation and adaptation in seagrasses are explored, explaining strengths and weaknesses based on the main results obtained from the most recent literature. We conclude that the implemented experimental approaches, whether performed with controlled or field experiments, provide new insights to explore the basis of plasticity in seagrasses. However, an improvement of molecular analysis and the application of multi‐factorial experiments are required to better explore genetic and epigenetic adjustments to rapid environmental shifts. These considerations revealed the potential for selecting the best phenotypes to promote assisted evolution with fundamental implications on restoration and preservation efforts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-02-18
    Description: Based on the European Waste Framework Directive and the German Recycling Management Act of 01.06.2012 the objectives for a national waste prevention programme were defined. As main objective, according to art. 1 WFD, the "prevention or reduction of the disadvantageous impacts of waste generation and management on the human health and the environment" is recommended. Indicators for a quantitative and qualitative monitoring are derived for both, the individual measures as well as for a waste prevention programme.
    Keywords: ddc:320
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research
    In:  EPIC3Berichte zur Polar- und Meeresforschung (Reports on Polar and Marine Research), Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 480, 161 p., ISSN: 1618-3193
    Publication Date: 2018-09-07
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Berichte zur Polar- und Meeresforschung" , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research
    In:  EPIC3Berichte zur Polar- und Meeresforschung (Reports on Polar and Marine Research), Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 501, 247 p., ISSN: 1618-3193
    Publication Date: 2018-09-07
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Berichte zur Polar- und Meeresforschung" , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...