GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-08-19
    Description: Net-zero climate policies foresee deployment of atmospheric carbon dioxide removal wit geological, terrestrial, or marine carbon storage. While terrestrial and geological storage would be governed under the framework of national property rights, marine storage implies that carbon is transferred from one global common, the atmosphere, to another global common, the ocean, in particular if storage exceeds beyond coastal applications. This paper investigates the option of carbon dioxide removal (CDR) and storage in different (marine) reservoir types in an analytic climate-economy model, and derives implications for optimal mitigation efforts and CDR deployment. We show that the introduction of CDR lowers net energy input and net emissions over the entire time path. Furthermore, CDR affects the Social Cost of Carbon (SCC) via changes in total economic output but leaves the analytic structure of the SCC unchanged. In the first years after CDR becomes available the SCC is lower and in later years it is higher compared to a standard climate-economy model. Carbon dioxide emissions are first higher and then lower relative to a world without CDR. The paper provides the basis for the analysis of decentralized and potentially non-cooperative CDR policies.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-07
    Description: Nitrogen fixers, or diazotrophs, play a key role in the carbon and nitrogen cycle of the world oceans, but the controlling mechanisms are not comprehensively understood yet. The present study compares two paradigms on the ecological niche of diazotrophs in an Earth System Model (ESM). In our standard model configuration, which is representative for most of the state-of-the-art pelagic ecosystem models, diazotrophs take advantage of zooplankton featuring a lower food preference for diazotrophs than for ordinary phytoplankton. We compare this paradigm with the idea that diazotrophs are more competitive under oligotrophic conditions, characterized by low (dissolved, particulate, organic and inorganic) phosphorous availability. Both paradigms are supported by observational evidence and lead to a similar good agreement to the most recent and advanced observation-based nitrogen fixation estimate in our ESM framework. Further, we illustrate that the similarity between the two paradigms breaks in a RCP 8.5 anthropogenic emission scenario. We conclude that a more advanced understanding of the ecological niche of diazotrophs is mandatory for assessing the cycling of essential nutrients, especially under changing environmental conditions. Our results call for more in-situ measurements of cyanobacteria biomass if major controls of nitrogen fixation in the oceans are to be dissected.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-06-28
    Description: Nitrogen fixers, or diazotrophs, play a key role in the carbon and nitrogen cycle of the world oceans, but the controlling mechanisms are not comprehensively understood yet. The present study compares two paradigms on the ecological niche of diazotrophs in an Earth System Model (ESM). In our standard model configuration, which is representative for most of the state-of-the-art pelagic ecosystem models, diazotrophs take advantage of zooplankton featuring a lower food preference for diazotrophs than for ordinary phytoplankton. We compare this paradigm with the idea that diazotrophs are more competitive under oligotrophic conditions, characterized by low (dissolved, particulate, organic and inorganic) phosphorous availability. Both paradigms are supported by observational evidence and lead to a similar good agreement to the most recent and advanced observation-based nitrogen fixation estimate in our ESM framework. Further, we illustrate that the similarity between the two paradigms breaks in a RCP 8.5 anthropogenic emission scenario. We conclude that a more advanced understanding of the ecological niche of diazotrophs is mandatory for assessing the cycling of essential nutrients, especially under changing environmental conditions. Our results call for more in-situ measurements of cyanobacteria biomass if major controls of nitrogen fixation in the oceans are to be dissected.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-08-19
    Description: This study uses an existing perturbed parameter ensemble (PPE) of simulated ocean CO2 removal (CDR) to better determine sustainable pathways of ocean-based NET deployment and to provide information to constrain the design of subsequent modelling experiments. The results show that ocean alkalinity enhancement (OAE) can only help meet SDG13 (Climate Action) when other ambitious mitigation efforts are taken. This reinforces that OAE is not a substitute for emissions reduction, but could contribute to meeting our climate goals (if other factors suggest OAE is worth doing). For SDG14 (Life Below Water), the results suggest OEA can contribute to limiting or even reversing ocean acidification. Meeting many other SDG14 objectives is closely linked to also meeting SDG13. A key recommendation is therefore, that subsequent simulations in OceanNETs should only use SDG13 compatible baseline scenarios, unless there is some specific need for process understanding at higher levels of climate change. The analysis has also determined that the idealized CDR in the PPE is not suitable for determining many socio-economic constraints and the implications that these have for meeting the SDGs. Another key recommendation is therefore, that subsequent simulations within OceanNETs should use more realistic scenarios of CDR deployment.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-06-09
    Description: Research undertaken in Task 2.2 identified a range of governance challenges to ocean-based NETs related to the global ocean governance framework, e.g., linked to the transboundary nature of the ocean, potential effects of ocean-based NETs on the ocean’s condition and marine ecosystem services, as well as the many unknowns and uncertainties linked to NET-deployment. The fragmented approaches and frameworks in place to govern the global ocean further complicate comprehensive governance of these emerging technologies. This deliverable presents results from a workshop that explored how oceanbased NETs should be governed to best confront these challenges and integrate international climate targets as well as global goals for ocean and biodiversity conservation, in addition to global ambitions towards sustainable development. The workshop is part of research undertaken by Task 2.2 to assess how ocean-based NETs are addressed by the current global ocean governance framework and develop governance scenarios and recommendations to policy makers for a “good governance” of NETs in the ocean.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-06-17
    Description: Any integration of extra carbon dioxide removal (CDR) via terrestrial or marine sink enhancement into climate policies requires accounting for their effectiveness in reducing atmospheric carbon concentration and translating this information into the amount of carbon credits (to be used in official and voluntary emission trading schemes). Here, we assess accounting schemes in their appropriateness of assigning carbon credits. We discuss the role of temporary carbon storage and present the various ccounting methods for carbon credit assignment. We explain how we have implemented the methods numerically and analyse carbon assignments across the different accounting schemes, using stylized, model-based ocean sink enhancement experiments.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-03-10
    Description: Geological records show that vast proglacial lakes existed along the land terminating margins of palaeo ice sheets in Europe and North America. Proglacial lakes impact ice sheet dynamics by imposing marine-like boundary conditions at the ice margin. These lacustrine boundary conditions include changes in the ice sheet’s geometry, stress balance and frontal ablation and therefore affect the entire ice sheet’s mass balance. This interaction, however, has not been rigorously implemented in ice sheet models. In this study, the implementation of an adaptive lake boundary into the Parallel Ice Sheet Model (PISM) is described and applied to the glacial retreat of the Laurentide Ice Sheet (LIS). The results show that the presence of proglacial lakes locally enhances the ice flow. Along the continental ice margin, ice streams and ice lobes can be observed. Lacustrine terminating ice streams cause immense thinning of the ice sheet’s interior and thus play a significant role in the demise of the LIS. Due to the presence of lakes, a process similar to the marine ice sheet instability causes the collapse of the ice saddle over Hudson Bay, which blocked drainage via the Hudson Strait. In control experiments without a lake model, Hudson Bay is still glaciated at the end of the simulation. Future studies should target the development of parametrizations that better describe the glacial-lacustrine interactions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-06-17
    Description: This report summarizes OceanNETs stakeholder engagement activities in the Canary Islands, prior and during the mesocosm study in ocean alkalinity enhancement carried out on the island of Gran Canaria in September-October 2021. It also presents ideas for future stakeholder engagement in the islands.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...