GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-06-14
    Description: The interdisciplinary exchange in climate engineering research offers a unique opportunity to make assumptions more explicit for such research projects. While making assumptions explicit is the standard in all disciplinary sciences, some assumptions in the context of societal challenges can only be usefully unveiled, discussed, and verified from the perspective of other research disciplines. Results from successful interdisciplinary collaborations are then more accessible and more generalizable to actors beyond the confines of the academic community. We aim to illustrate how interdisciplinary exchange helps to unveil assumptions in research endeavors and why this is important for successful interdisciplinary collaborations. We therefore follow different stages of the German Priority Program on Climate Engineering (SPP 1689), which we use as an example case of a successful interdisciplinary project. SPP 1689 focused on risks, challenges, and opportunities of Climate Engineering from the perspectives of numerous disciplines. Major results were that the initial assessments of technologies had to be sobered, the consideration of trade-offs is crucial for the potential assessment, and governance issues appeared larger than previously considered. From the reflections of SPP 1689, we conclude with three lessons learned: (1) The project profited from egalitarian organizational structures and communicative practices, preventing the predominance from single disciplines. (2) Within the project continuous efforts were undertaken to foster interdisciplinary understanding. In addition, the flexible project structure allowed for the accommodation of research needs arising as a result of these exchanges. (3) SPP 1689 offered early career researchers a platform for professional exchange on common challenges and best practices of being a part of an interdisciplinary research project.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Concordia University http://dx.doi.org/10.13039/501100002914
    Description: Simon Fraser University (CA)
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:304.28 ; Climate engineering ; Interdisciplinarity ; Assumptions ; Communication ; Carbon dioxide removal ; Radiation management
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-18
    Description: Warm periods in Earth's history tend to cool more slowly than cool periods warm. Carbon cycle feedbacks play a major role in these dynamics, from the slower rate of recovery of ocean carbon export production, to the slower re- establishment of geosphere carbon reservoirs, relative to rates of loss. Here we explore one- differences in how the global ocean takes up and gives up heat and carbon in forced rapid warming and cooling climate scenarios. We force an intermediate- complexity earth system model using two atmospheric CO2 scenarios. A ramp-up (1% per year increase in atmospheric CO2 for 150 years) starts from an average global CO2 concentration of 285 ppm to represent warming of an icehouse climate. A ramp- down (1% per year decrease in atmospheric CO2 for 150 years) starts from an average global CO2 concentration of 1257 ppm to represent cooling of a greenhouse climate. Atmospheric CO2 is then held constant in each simulation and the model is integrated an additional 350 years. The ramp-down simulation shows a weaker response of surface air temperature to changes in radiative forcing relative to the ramp-up scenario. This weaker response is due to a relatively large and fast release of heat from the ocean to the atmosphere. This asymmetry in heat exchange in cooling and warming scenarios exists mainly because of differences in the response of the ocean circulation to forcing. In the ramp-up, increasing stratification and weakening of meridional overturning circulation slows ocean carbon and heat uptake. In the ramp-down, cooling accelerates meridional overturning and deepens vertical mixing, accelerating the release of carbon and heat stored at depth. Though idealized, our experiments offer insight into differences in ocean dynamics in icehouse and greenhouse climate transitions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-18
    Description: Climate change resulting from increasing atmospheric CO2 is having detrimental effects on the Earth system. Societies have recognized that anthropogenic CO2 emissions must be reduced and ultimately cease to avoid potentially catastrophic impacts. However, at present timely and necessary emissions reductions appear to be very difficult to achieve. To compliment less than sufficient emissions reductions carbon dioxide removal (CDR) from the atmosphere is suggested. CDR is proposed through increasing natural carbon sinks, engineering new carbon sinks, or combing natural uptake with engineered storage. Initial studies demonstrate that removal of CO2 from the atmosphere will elicit a carbon cycle response with a “rebound” and other feedbacks generally opposing and so reducing the net-removal. We review this work into the carbon cycle response to CDR in general and for different proposed CDR methods and discuss future research needs. Understanding these dynamics and their uncertainties have important implications for quantifying the efficacy of CDR.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Earth's Future, 5 (12). pp. 1252-1266.
    Publication Date: 2020-11-23
    Description: The potential of Coastal Ocean Alkalinization (COA), a carbon dioxide removal (CDR) climate engineering strategy that chemically increases ocean carbon uptake and storage, is investigated with an Earth system model of intermediate complexity. The CDR potential and possible environmental side effects are estimated for various COA deployment scenarios, assuming olivine as the alkalinity source in ice-free coastal waters (about 8.6% of the global ocean's surface area), with dissolution rates being a function of grain size, ambient seawater temperature and pH. Our results indicate that for a large-enough olivine deployment of small-enough grain sizes (10 μm), atmospheric CO2 could be reduced by more than 800 GtC by the year 2100. However, COA with coarse olivine grains (1000 μm) has little CO2 sequestration potential on this time scale. Ambitious CDR with fine olivine grains would increase coastal aragonite saturation Ω to levels well beyond those that are currently observed. When imposing upper limits for aragonite saturation levels (Ωlim) in the grid boxes subject to COA (Ωlim = 3.4 and 9 chosen as examples), COA still has the potential to reduce atmospheric CO2 by 265 GtC (Ωlim=3.4) to 790 GtC (Ωlim=9) and increase ocean carbon storage by 290 Gt (Ωlim=3.4) to 913 Gt (Ωlim=9) by year 2100.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Earth System Dynamics, 9 (1). pp. 15-31.
    Publication Date: 2021-03-26
    Description: This study introduces the Systematic Correlation Matrix Evaluation (SCoMaE) method, a bottom–up approach which combines expert judgment and statistical information to systematically select transparent, nonredundant indicators for a comprehensive assessment of the state of the Earth system. The methods consists of two basic steps: (1) the calculation of a correlation matrix among variables relevant for a given research question and (2) the systematic evaluation of the matrix, to identify clusters of variables with similar behavior and respective mutually independent indicators. Optional further analysis steps include (3) the interpretation of the identified clusters, enabling a learning effect from the selection of indicators, (4) testing the robustness of identified clusters with respect to changes in forcing or boundary conditions, (5) enabling a comparative assessment of varying scenarios by constructing and evaluating a common correlation matrix, and (6) the inclusion of expert judgment, for example, to prescribe indicators, to allow for considerations other than statistical consistency. The example application of the SCoMaE method to Earth system model output forced by different CO2 emission scenarios reveals the necessity of reevaluating indicators identified in a historical scenario simulation for an accurate assessment of an intermediate–high, as well as a business-as-usual, climate change scenario simulation. This necessity arises from changes in prevailing correlations in the Earth system under varying climate forcing. For a comparative assessment of the three climate change scenarios, we construct and evaluate a common correlation matrix, in which we identify robust correlations between variables across the three considered scenarios.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Earth's Future, 6 (3). pp. 565-582.
    Publication Date: 2021-02-08
    Description: To maintain the chance of keeping the average global temperature increase below 2 degrees C and to limit long-term climate change, removing carbon dioxide from the atmosphere (carbon dioxide removal, CDR) is becoming increasingly necessary. We analyze optimal and cost-effective climate policies in the dynamic integrated assessment model (IAM) of climate and the economy (DICE2016R) and investigate (1) the utilization of (ocean) CDR under different climate objectives, (2) the sensitivity of policies with respect to carbon cycle feedbacks, and (3) how well carbon cycle feedbacks are captured in the carbon cycle models used in state-of-the-art IAMs. Overall, the carbon cycle model in DICE2016R shows clear improvements compared to its predecessor, DICE2013R, capturing much better long-term dynamics and also oceanic carbon outgassing due to excess oceanic storage of carbon from CDR. However, this comes at the cost of a (too) tight short-term remaining emission budget, limiting the model suitability to analyze low-emission scenarios accurately. With DICE2016R, the compliance with the 2 degrees C goal is no longer feasible without negative emissions via CDR. Overall, the optimal amount of CDR has to take into account (1) the emission substitution effect and (2) compensation for carbon cycle feedbacks.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-08
    Description: Atmospheric carbon dioxide (CO2) levels continue to rise, increasing the risk of severe impacts on the Earth system, and on the ecosystem services that it provides. Artificial ocean alkalinization (AOA) is capable of reducing atmospheric CO2 concentrations and surface warming and addressing ocean acidification. Here, we simulate global and regional responses to alkalinity (ALK) addition (0.25 PmolALK yr−1) over the period 2020–2100 using the CSIRO-Mk3L-COAL Earth System Model, under high (Representative Concentration Pathway 8.5; RCP8.5) and low (RCP2.6) emissions. While regionally there are large changes in alkalinity associated with locations of AOA, globally we see only a very weak dependence on where and when AOA is applied. On a global scale, while we see that under RCP2.6 the carbon uptake associated with AOA is only ∼ 60 % of the total, under RCP8.5 the relative changes in temperature are larger, as are the changes in pH (140 %) and aragonite saturation state (170 %). The simulations reveal AOA is more effective under lower emissions, therefore the higher the emissions the more AOA is required to achieve the same reduction in global warming and ocean acidification. Finally, our simulated AOA for 2020–2100 in the RCP2.6 scenario is capable of offsetting warming and ameliorating ocean acidification increases at the global scale, but with highly variable regional responses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-07-13
    Description: In this paper we used a steady-state ecosystem model that simulates both dissolved organic carbon (DOC) and nitrogen (DON) cycling to study how the planktonic community structure, nutrient availability, and dissolved organic matter (DOM) loading affect these cycles in idealized oceanic, coastal, and estuarine surface waters. The model was able to reproduce DOM and planktonic biomass distributions, uptake rates, and production rates (including DOM) that fell within ranges reported for oceanic, coastal, and estuarine systems. Using a sensitivity analysis we show that DOM cycling was intricately tied to the biomass concentration, distribution, and productivity of plankton. The efficiency of nutrient remineralization and the availability of inflowing nutrients and DON also played a large role in DOM cycling. In these simulations the largest autochthonous source of DOC was always phytoplankton exudation while important sources of DON varied considerably. In the oceanic simulations heterotrophic bacteria were particularly important for mediating DOM cycling because they were the primary agents that controlled nutrient recycling and supply (i.e., strong bottom-up control). In contrast, in the estuarine simulations mortality (mainly from grazing and viral lysis) had the most influence on DOM production. However, DOM cycling was generally less dependent on interactions between plankton in the estuarine case because of high nutrient and DOM loading. The coastal simulations were somewhere in between. In all simulations competition between different size classes of phytoplankton also played an important role in DOM cycling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  [Poster] In: Climate Engineering Research Symposium 2015, 07.-10.07.2015, Berlin, Germany .
    Publication Date: 2016-02-17
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  [Poster] In: AGU Fall Meeting 2015, 14.-18.12.2015, San Francisco, USA .
    Publication Date: 2019-09-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...