GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    GEOMAR Helmholtz Centre for Ocean Research Kiel
    In:  Alkor-Berichte, AL561 . GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany, 34 pp.
    Publication Date: 2021-11-23
    Description: The AL561 cruise was conducted in the framework of the project APOC (“Anthropogenic impacts on Particulate Organic Carbon cycling in the North Sea”). This collaborative project between GEOMAR, AWI, HEREON, UHH, and BUND is to understand how particulate organic carbon (POC) cycling contributes to carbon sequestration in the North Sea and how this ecosystem service is compromised and interlinked with global change and a range of human pressures include fisheries (pelagic fisheries, bottom trawling), resource extraction (sand mining), sediment management (dredging and disposal of dredged sediments) and eutrophication. The main aim of the sampling activity during AL561 cruise was to recover undisturbed sediment from high accumulation sites in the Skagerrak/Kattegat and to subsample sediment/porewater at high resolution in order to investigate sedimentation transport processes, origin of sediment/POC and mineralization processes over the last 100- 200 years. Moreover, the actual processes of sedimentation and POC degradation in the water column and benthic layer will be addressed by sampling with CTD and Lander devices. In total 9 hydroacoustic surveys (59 profiles), 4 Gravity Corer, 7 Multicorer, 3 Lander and 4 CTD stations were successfully conducted during the AL561 cruise.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2020-05-28
    Description: The tight program of scientific research cruises usually does not leave enough time for thorough tests of new research equipment and their system components, nor for extensive pilot and handling training. For this reason, ship time was requested for sea trials of two types of autonomous (not tethered) underwater vehicles owned by GEOMAR, the manned 400-meter submersible JAGO and the Hover-AUVs ANTON and LUISE, type Girona500. The aim was to test several technical and operational aspects with both vehicles at locations with differently structured terrain (from flat ground to steep rocky slopes) and to water depths of up to 500 meters. The Aeolian Islands in the Tyrrhenian Sea north of Sicily were chosen as test area. The volcanic islands offer sheltered sea conditions at their leeway, and bottom currents are usually weak or absent. Rocky and steep slopes are located in short distances to areas with flat underwater topography, providing ideal test conditions.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-09
    Description: Hotspot tracks (quasilinear chains of seamounts, ridges, and other volcanic structures) provide important records of plate motions, as well as mantle geodynamics, magma flux, and mantle source compositions. The Tristan-Gough-Walvis Ridge (TGW) hotspot track, extending from the active volcanic islands of Tristan da Cunha and Gough through a province of guyots and then along Walvis Ridge to the Etendeka flood basalt province, forms one of the most prominent and complex global hotspot tracks. The TGW hotspot track displays a tight linear age progression in which ages increase from the islands to the flood basalts (covering ~135 My). Unlike Pacific tracks, which are simple chains of seamounts that are often compared to chains of pearls, the TGW track is alternately a steep-sided narrow ridge, an oceanic plateau, subparallel linear ridges and chains of seamounts, and areas of what appear to be randomly dispersed seamounts. The track displays isotopic zonation over the last ~70 My. The zonation appears near the middle of the track just before it splits into two to three chains of ridge- and guyot-type seamounts. The older ridge is also overprinted with age-progressive late-stage volcanism, which was emplaced ~30–40 My after the initial eruptions and has a distinct isotopic composition. The plan for Expedition 391 was to drill at six sites, three along Walvis Ridge and three in the seamount (guyot) province, to gather igneous rocks to better understand the formation of track edifices, the temporal and geochemical evolution of the hotspot, and the variation in paleolatitudes at which the volcanic edifices formed. After a delay of 18 days to address a shipboard outbreak of the coronavirus disease 2019 (COVID-19) virus, Expedition 391 proceeded to drill at four of the proposed sites: three sites on the eastern Walvis Ridge around Valdivia Bank, an ocean plateau within the ridge, and one site on the lower flank of a guyot in the Center track, a ridge located between the Tristan subtrack (which extends from the end of Walvis Ridge to the island of Tristan da Cunha) and the Gough subtrack (which extends from Walvis Ridge to the island of Gough). One hole was drilled at Site U1575, located on a low portion of the northeastern Walvis Ridge north of Valdivia Bank. At this location, 209.9 m of sediments and 122.4 m of igneous basement were cored. The latter comprised 10 submarine lava units consisting of pillow, lobate, sheet, and massive lava flows, the thickest of which was ~21 m. Most lavas are tholeiitic, but some alkalic basalts were recovered. A portion of the igneous succession consists of low-Ti basalts, which are unusual because they appear in the Etendeka flood basalts but have not been previously found on Walvis Ridge. Two holes were drilled at Site U1576 on the west flank of Valdivia Bank. The first hole was terminated because a bit jammed shortly after penetrating igneous basement. Hole U1576A recovered a remarkable ~380 m thick sedimentary section consisting mostly of chalk covering a nearly complete sequence from Paleocene to Late Cretaceous (Campanian). These sediments display short and long cyclic color changes that imply astronomically forced and longer term paleoenvironmental changes. The igneous basement yielded 11 submarine lava units ranging from pillows to massive flows, which have compositions varying from tholeiitic basalt to basaltic andesite, the first occurrence of this composition recovered from the TGW track. These units are separated by seven sedimentary chalk units that range in thickness from 0.1 to 11.6 m, implying a long-term interplay of sedimentation and lava eruptions. Coring at Site U1577, on the extreme eastern flank of Valdivia Bank, penetrated a 154 m thick sedimentary section, the bottom ~108 m of which is Maastrichtian–Campanian (possibly Santonian) chalk with vitric tephra layers. Igneous basement coring progressed only 39.1 m below the sediment-basalt contact, recovering three massive submarine tholeiite basalt lava flows that are 4.1, 15.5, and 〉19.1 m thick, respectively. Paleomagnetic data from Sites U1577 and U1576 indicate that their volcanic basements formed just before the end of the Cretaceous Normal Superchron and during Chron 33r, shortly afterward, respectively. Biostratigraphic and paleomagnetic data suggest an east–west age progression across Valdivia Bank, becoming younger westward. Site U1578, located on a Center track guyot, provided a long and varied igneous section. After coring through 184.3 m of pelagic carbonate sediments mainly consisting of Eocene and Paleocene chalk, Hole U1578A cored 302.1 m of igneous basement. Basement lavas are largely pillows but are interspersed with sheet and massive flows. Lava compositions are mostly alkalic basalts with some hawaiite. Several intervals contain abundant olivine, and some of the pillow stacks consist of basalt with remarkably high Ti content. The igneous sequence is interrupted by 10 sedimentary interbeds consisting of chalk and volcaniclastics and ranging in thickness from 0.46 to 10.19 m. Paleomagnetic data display a change in basement magnetic polarity ~100 m above the base of the hole. Combining magnetic stratigraphy with biostratigraphic data, the igneous section is inferred to span 〉1 My. Abundant glass from pillow lava margins was recovered at Sites U1575, U1576, and U1578. Although the igneous penetration was only two-thirds of the planned amount, drilling during Expedition 391 obtained samples that clearly will lead to a deeper understanding of the evolution of the Tristan-Gough hotspot and its track. Relatively fresh basalts with good recovery will provide ample samples for geochemical, geochronologic, and paleomagnetic studies. Good recovery of Late Cretaceous and early Cenozoic chalk successions provides samples for paleoenvironmental study.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-30
    Description: The coastal and open oceans represent a major, but yet unconstrained, sink for plastics. It is likely that plastic-biota interactions are a key driver for the fragmentation, aggregation, and vertical transport of plastic litter from surface waters to sedimentary sinks. Cruise SO279 conducted sampling to address core questions of microplastic distribution in the open ocean water column, biota, and sediments. Seven stations were sampled between the outer Bay of Biscay and the primary working area south of the Azores. Additional samples were collected from surface waters along the cruise track to link European coastal and shelf waters with the open ocean gyre. Microplastic samples coupled with geochemical tracer analyses will build a mechanistic understanding of MP transport and its biological impact reaching from coastal seas to the central gyre water column and sinks at the seabed. Furthermore, floating plastics were sampled for microbial community and genetic analyses to investigate potential enzymatic degradation pathways. Cruise SO279 served as the third cruise of a number of connected research cruises to build an understanding of the transport pathways of plastic and microplastic debris in the North Atlantic from the input through rivers and air across coastal seas into the accumulation spots in the North Atlantic gyre and the vertical export to its sink at the seabed. The cruise was an international effort as part of the JPI Oceans project HOTMIC (“HOrizontal and vertical oceanic distribution, Transport, and impact of MICroplastics”) and the BMBF funded project PLASTISEA (‘Harvesting the marine Plastisphere for novel cleaning concepts’), and formed a joint effort of HOTMIC and PLASTISEA researchers from a range of countries and institutes.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-01-19
    Description: International Ocean Discovery Program (IODP) Expedition 385 drilled organic-rich sediments with sill intrusions on the flanking regions and in the northern axial graben in Guaymas Basin, a young marginal rift basin in the Gulf of California. Guaymas Basin is characterized by a widely distributed, intense heat flow and widespread off-axis magmatism expressed by a dense network of sill intrusions across the flanking regions, which is in contrast to classical mid-ocean ridge spreading centers. The numerous off-axis sills provide multiple transient heat sources that mobilize buried sedimentary carbon, in part as methane and other hydrocarbons, and drive hydrothermal circulation. The resulting thermal and geochemical gradients shape abundance, composition, and activity of the deep subsurface biosphere of the basin. Drill sites extend over the flanking regions of Guaymas Basin, covering a distance of ~81 km from the from the northwest to the southeast. Adjacent Sites U1545 and U1546 recovered the oldest and thickest sediment successions (to ~540 meters below seafloor [mbsf]; equivalent to the core depth below seafloor, Method A [CSF-A] scale), one with a thin sill (a few meters in thickness) near the drilled bottom (Site U1545), and one with a massive, deeply buried sill (~356–430 mbsf) that chemically and physically affects the surrounding sediments (Site U1546). Sites U1547 and U1548, located in the central part of the northern Guaymas Basin segment, were drilled to investigate a 600 m wide circular mound (bathymetric high) and its periphery. The dome-like structure is outlined by a ring of active vent sites called Ringvent. It is underlain by a remarkably thick sill at shallow depth (Site U1547). Hydrothermal gradients steepen at the Ringvent periphery (Holes U1548A–U1548C), which in turn shifts the zones of authigenic carbonate precipitation and of highest microbial cell abundance toward shallower depths. The Ringvent sill was drilled several times and yielded remarkably diverse igneous rock textures, sediment–sill interfaces, and hydrothermal alteration, reflected by various secondary minerals in veins and vesicles. Thus, the Ringvent sill became the target of an integrated sampling and interdisciplinary research effort that included geological, geochemical, and microbiological specialties. The thermal, lithologic, geochemical, and microbiological contrasts between the two deep northwestern sites (U1545 and U1546) and the Ringvent sites (U1547 and U1548) form the scientific centerpiece of the expedition. These observations are supplemented by results from sites that represent attenuated cold seepage conditions in the central basin (Site U1549), complex and disturbed sediments overlying sills in the northern axial trough (Site U1550), terrigenous sedimentation events on the southeastern flanking regions (Site U1551), and hydrate occurrence in shallow sediments proximal to the Sonora margin (Site U1552). The scientific outcomes of Expedition 385 will (1) revise long-held assumptions about the role of sill emplacement in subsurface carbon mobilization versus carbon retention, (2) comprehensively examine the subsurface biosphere of Guaymas Basin and its responses and adaptations to hydrothermal conditions, (3) redefine hydrothermal controls of authigenic mineral formation in sediments, and (4) yield new insights into many geochemical and geophysical aspects of both architecture and sill–sediment interaction in a nascent spreading center. The generally high quality and high degree of completeness of the shipboard datasets present opportunities for interdisciplinary and multidisciplinary collaborations during shore-based studies. In comparison to Deep Sea Drilling Project Leg 64 to Guaymas Basin in 1979, sophisticated drilling strategies (for example, the advanced piston corer [APC] and half-length APC systems) and numerous analytical innovations have greatly improved sample recovery and scientific yield, particularly in the areas of organic geochemistry and microbiology. For example, microbial genomics did not exist 40 y ago. However, these technical refinements do not change the fact that Expedition 385 will in many respects build on the foundations laid by Leg 64 for understanding Guaymas Basin, regardless of whether adjustments are required in the near future.
    Type: Report , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-11-11
    Description: 02.10.2020 – 15.10.2020, Kiel (Germany) – Kiel (Germany) GeophysPracUniBremen
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    International Ocean Discovery Program
    In:  International Ocean Discovery Program: Preliminary Report, 378 . International Ocean Discovery Program, 20 pp.
    Publication Date: 2020-04-27
    Description: International Ocean Discovery Program (IODP) Expedition 378 was designed to recover the first comprehensive set of Paleogene sedimentary sections from a transect of sites strategically positioned in the South Pacific to reconstruct key changes in oceanic and atmospheric circulation. These sites would have provided an unparalleled opportunity to add crucial new data and geographic coverage to existing reconstructions of Paleogene climate. In addition to the ~15 month postponement of Expedition 378 and subsequent port changes resulting in a reduction of the number of primary sites, testing and evaluation of the R/V JOIDES Resolution derrick in the weeks preceding the expedition determined that it would not support deployment of drill strings in excess of 2 km. Because of this determination, only 1 of the originally approved 7 primary sites was drilled. Expedition 378 recovered the first continuously cored, multiple-hole Paleogene sedimentary section from the southern Campbell Plateau at Site U1553. This high–southern latitude site builds on the legacy of Deep Sea Drilling Project (DSDP) Site 277, a single, partially spot cored hole, providing a unique opportunity to refine and augment existing reconstructions of the past ~66 My of climate history. This also includes the discovery of a new siliciclastic unit that had never been drilled before. As the world’s largest ocean, the Pacific Ocean is intricately linked to major changes in the global climate system. Previous drilling in the low-latitude Pacific Ocean during Ocean Drilling Program (ODP) Legs 138 and 199 and Integrated Ocean Drilling Program Expeditions 320 and 321 provided new insights into climate and carbon system dynamics, productivity changes across the zone of divergence, time-dependent calcium carbonate dissolution, bio- and magnetostratigraphy, the location of the Intertropical Convergence Zone, and evolutionary patterns for times of climatic change and upheaval. Expedition 378 in the South Pacific Ocean uniquely complements this work with a high-latitude perspective, especially because appropriate high-latitude records are unobtainable in the Northern Hemisphere of the Pacific Ocean. Site U1553 and the entire corpus of shore-based investigations will significantly contribute to the challenges of the “Climate and Ocean Change: Reading the Past, Informing the Future” theme of the IODP Science Plan (How does Earth’s climate system respond to elevated levels of atmospheric CO2? How resilient is the ocean to chemical perturbations?). Furthermore, Expedition 378 will provide material from the South Pacific Ocean in an area critical for high-latitude climate reconstructions spanning the Paleocene to late Oligocene.
    Type: Report , NonPeerReviewed
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...