GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Dimethylsulfide (DMS)  (2)
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © National Research Council Canada, 2004. This article is posted here by permission of National Research Council Canada for personal use, not for redistribution. The definitive version was published in Canadian Journal of Fisheries and Aquatic Sciences 61 (2004): 788-803, doi:10.1139/F04-027.
    Beschreibung: The dimethylsulfide (DMS) production model NODEM (Northern Oceans DMS Emission Model) was coupled with the water column ocean model GOTM (General Ocean Turbulence Model) that includes a two-equation k&150;ε turbulence scheme. This coupled physical-biogeochemical ocean model represents a significant improvement over the previous uncoupled version of NODEM that was driven by a diagnostic vertical mixing scheme. Using the same set of biogeochemical parameters, the coupled model is used to simulate the annual cycles of 1992 and 1993 at Hydrostation S in the Sargasso Sea. The better reproduction of the turbulent mixing environment corrects some deficiencies in nitrogen cycling, especially in the seasonal evolution of the nutrient concentrations. Hence, the coupled model captures the late-winter chlorophyll- and DMS(P)-rich blooms. It is also more adept at reproducing the vertical distribution of chlorophyll and DMS(P) in summer. Moreover, the DMS pool becomes less dependent on parameters controlling the nitrogen cycle and relatively more sensitive to parameters related to the sulfur cycle. Finally, the coupled model reproduces some of the observed differences in DMS(P) pools between 1992 and 1993, the latter being an independent data set not used in calibrating the initial version of NODEM.
    Beschreibung: This work was supported in part by the Government of Canada’s Climate Change Action Fund and by the Canadian–SOLAS Network (Surface Ocean – Lower Atmosphere Study) of the Natural Sciences and Engineering Research Council of Canada and the Canadian Foundation for Climate and Atmospheric Sciences.
    Schlagwort(e): Dimethylsulfide (DMS) ; NODEM (Northern Oceans DMS Emission Model) ; GOTM (General Ocean Turbulence Model)
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: 980236 bytes
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C08S10, doi:10.1029/2003JC001795.
    Beschreibung: Gas transfer rates were determined from vertical profile measurements of atmospheric dimethylsulfide (DMS) gradients over the equatorial Pacific Ocean obtained during the GasEx-2001 cruise. A quadratic relationship between gas transfer velocity and wind speed was derived from the DMS flux measurements; this relationship was in close agreement with a parameterization derived from relaxed eddy accumulation measurements of DMS over the northeastern Pacific Ocean. However, the GasEx-2001 relationship results in gas transfer rates that are a factor 2 higher than gas transfer rates calculated from a parameterization that is based on coincident eddy correlation measurements of CO2 flux. The measurement precision of both the profiling and eddy correlation techniques applied during GasEx-2001 is comparable; the two gas transfer data sets are in agreement within their uncertainty. Differences in the number of samples and the wind speed range over which CO2 and DMS fluxes were measured are likely causes for the observed discrepancy.
    Beschreibung: Funding for this work came from the Netherlands Organization for Scientific Research (NWO) and from the NOP project 951203: ‘‘Micrometeorology of air/sea fluxes of carbon dioxide. This work was supported by the Global Carbon Cycle project of the NOAA Office of Global Programs grant NA17RJ1223, National Science Foundation grant OCE-9986724, and NSF grant ATM-0120569.
    Schlagwort(e): Dimethylsulfide (DMS) ; Atmospheric gradients ; Micrometeorology ; GasEx-2001
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...