GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Zhu, Dan; Ciais, Philippe; Chang, Jinfeng; Krinner, Gerhard; Peng, Shushi; Viovy, Nicolas; Penuelas, Josep; Zimov, Sergey A (2018): The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum. Nature Ecology & Evolution, https://doi.org/10.1038/s41559-018-0481-y
    Publication Date: 2023-01-13
    Description: Large herbivores are a major agent in ecosystems, influencing vegetation structure and carbon and nutrient flows. Yet most of the current global dynamic vegetation models (DGVMs) lack explicit representation of large herbivores. Here we incorporated a grazing module in the ORCHIDEE-MICT DGVM based on physiological and demographic equations for wild large grazers, taking into account the feedbacks of large grazers on vegetation. The model was applied globally for present-day and the last glacial maximum (LGM). Three NetCDF files are included, corresponding to the model results for three periods: present-day (1960-2009 average), pre-industrial (1860-1899 average), and the last glacial maximum (ca. 21 ka before present). Variables include the modeled potential grazer biomass/population density, along with the directly relevant outputs: vegetation distribution (i.e. fractional coverage of the plant functional types), and gross and net primary productivity. Detailed model descriptions and the simulation setup can be found in: Zhu et al. (2018).
    Keywords: File content; File format; File name; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 15 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lun, Fei; Liu, Junguo; Ciais, Philippe; Nesme, Thomas; Chang, Jinfeng; Wang, Rong; Goll, Daniel S; Sardans, Jordi; Penuelas, Josep; Obersteiner, Michael (2017): Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency. Earth System Science Data Discussions, 1-45, https://doi.org/10.5194/essd-2017-41
    Publication Date: 2023-01-27
    Description: The application of phosphorus (P) fertilizer to agricultural soils increased by 3.2 % annually from 2002 to 2010. We quantified in detail the P inputs and outputs of cropland and pasture, and the P fluxes through human and livestock consumers of agricultural products, at global, regional, and national scales from 2002 to 2010. Globally, half of the total P input (21.3 Tg P yr-1) into agricultural systems accumulated in agricultural soils during this period, with the rest lost to bodies of water through complex flows. Global P accumulation in agricultural soil increased from 2002 to 2010, despite decreases in 2008 and 2009, and the P accumulation occurred primarily in cropland. Despite the global increase of soil P, 32 % of the world's cropland and 43 % of the pasture had soil P deficits. Increasing soil P deficits were found for African cropland, versus increasing P accumulation in Eastern Asia. European and North American pasture had a soil P deficit because continuous removal of biomass P by grazing exceeded P inputs. International trade played a significant role in P redistribution among countries through the flows of P in fertilizer and food among countries. Based on country-scale budgets and trends we propose policy options to potentially mitigate regional P imbalances in agricultural soils, particularly by optimizing the use of phosphate fertilizer and recycling of waste P. The trend of increasing consumption of livestock products will require more P inputs to the agricultural system, implying a low P-use efficiency aggravating the P stocks scarcity in the future. The global and regional phosphorus budgets and their PUEs in agricultural systems is publicly available at https://doi.pangaea.de/10.1594/PANGAEA.875296.
    Type: Dataset
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet, 401.3 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Xu, Rongting; Tian, Hanqin; Pan, Shufen; Dangal, R S Shree; Chen, Jian; Chang, Jinfeng; Lu, Yonglong; Skiba, Ute Maria; Zhang, Bowen (2019): Increased nitrogen enrichment and shifted patterns in the world's grassland: 1860-2014. Earth System Science Data, 11(1), 175-187, https://doi.org/10.5194/essd-11-175-2019
    Publication Date: 2023-12-16
    Description: Production and application to soils of manure excreta from livestock production significantly perturb the global nutrient balance and result in significant greenhouse gas emissions that warm the earth's climate. Despite much attention paid to synthetic nitrogen (N) fertilizer and manure N applications to croplands, spatially-explicit, continuous time-series datasets of manure and fertilizer N inputs on pastures and rangelands are lacking. We developed three global gridded datasets at a resolution of 0.5 degree by 0.5 degree for the period 1860-2016 (i.e., annual manure N deposition (by grazing animals) rate, synthetic N fertilizer and N manure application rates), by combining annual and 5-arc minute spatial data on pastures and rangelands with country-level statistics on livestock manure, mineral and chemical fertilizers, and land use information for cropland and permanent meadows and pastures from the Food and Agricultural Organization database (FAOSTAT). Based on the new data products, we estimated that total N inputs, sum of manure N deposition, manure and fertilizer N application to pastures and rangelands increased globally from 15 to 101 Tg N yr-1 during 1860-2016. In particular during the period 2000-2016, livestock manure N deposition accounted for 83% of the total N inputs, whereas manure and fertilizer N application accounted 9% and 8%, respectively. At the regional scale, hotspots of manure N deposition remained largely similar during the period 1860-2016 (i.e., southern Asia, Africa, and South America), however hotspots of manure and fertilizer N application shifted from Europe to southern Asia in the early 21st century. The new three global datasets contribute to fill previous data gaps of global and regional N inputs in pastures and rangelands, improving the ability of ecosystem and biogeochemistry models to investigate the global impacts of N enrichment due to agriculture, in terms of associated greenhouse gas emissions and environmental sustainability issues.
    Keywords: File format; File name; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 12 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-20
    Description: Excessive anthropogenic nitrogen (N) inputs to the biosphere have disrupted the global nitrogen cycle. To better quantify the spatial and temporal patterns of anthropogenic N enrichments, assess their impacts on the biogeochemical cycles of the planet and other living organisms, and improve nitrogen use efficiency (NUE) for sustainable development, we develop a comprehensive and synthetic dataset for anthropogenic N inputs to the terrestrial biosphere. This Harmonized Anthropogenic N Inputs (HaNi) dataset takes advantage of different data sources in a spatiotemporally consistent way to generate a set of high-resolution gridded N input products from the preindustrial to present (1860-2019). The HaNi dataset includes annual rates of synthetic N fertilizer, manure application/deposition, and atmospheric N deposition in cropland, pasture, and rangeland at 5-arcmin. Specifically, the N inputs are categorized, according to the N forms and the land use, as 1) NH4-N fertilizer applied to cropland, 2) NO3-N fertilizer applied to cropland, 3) NH4-N fertilizer applied to pasture, 4) NO3-N fertilizer applied to pasture, 5) manure N application on cropland, 6) manure N application on pasture, 7) manure N deposition on pasture, 8) manure N deposition on rangeland, 9) NHx-N deposition, and 10) NOy-N deposition. The total anthropogenic N (TN) inputs to global terrestrial ecosystems increased from 29.05 Tg N yr-1 in the 1860s to 267.23 Tg N yr-1 in the 2010s, with the dominant N source changing from atmospheric N deposition (before the 1900s) to manure N (the 1910s-2000s), and to synthetic fertilizer in the 2010s. The proportion of synthetic NH4-N fertilizer increased from 64% in the 1960s to 90% in the 2010s, while synthetic NO3-N fertilizer decreased from 36% in the 1960s to 10% in the 2010s. Hotspots of TN inputs shifted from Europe and North America to East and South Asia during the 1960s-2010s. Such spatial and temporal dynamics captured by the HaNi dataset are expected to facilitate a comprehensive assessment of the coupled human-earth system and address a variety of social welfare issues, such as climate-biosphere feedback, air pollution, water quality, and biodiversity.
    Keywords: atmospheric deposition; Binary Object; Crop; fertilizer; File content; manure; nitrogen; Nitrogen Model Inter-Comparison Project; NMIP; pastures; rangeland
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...