GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Process-based models can be classified into: (a) terrestrial biogeochemical models (TBMs), which simulate fluxes of carbon, water and nitrogen coupled within terrestrial ecosystems, and (b) dynamic global vegetation models (DGVMs), which further couple these processes interactively with changes in slow ecosystem processes depending on resource competition, establishment, growth and mortality of different vegetation types. In this study, four models – RHESSys, GOTILWA+, LPJ-GUESS and ORCHIDEE – representing both modelling approaches were compared and evaluated against benchmarks provided by eddy-covariance measurements of carbon and water fluxes at 15 forest sites within the EUROFLUX project. Overall, model-measurement agreement varied greatly among sites. Both modelling approaches have somewhat different strengths, but there was no model among those tested that universally performed well on the two variables evaluated. Small biases and errors suggest that ORCHIDEE and GOTILWA+ performed better in simulating carbon fluxes while LPJ-GUESS and RHESSys did a better job in simulating water fluxes. In general, the models can be considered as useful tools for studies of climate change impacts on carbon and water cycling in forests. However, the various sources of variation among models simulations and between models simulations and observed data described in this study place some constraints on the results and to some extent reduce their reliability. For example, at most sites in the Mediterranean region all models generally performed poorly most likely because of problems in the representation of water stress effects on both carbon uptake by photosynthesis and carbon release by heterotrophic respiration (Rh).The use of flux data as a means of assessing key processes in models of this type is an important approach to improving model performance. Our results show that the models have value but that further model development is necessary with regard to the representation of the some of the key ecosystem processes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] French records of grape-harvest dates in Burgundy were used to reconstruct spring–summer temperatures from 1370 to 2003 using a process-based phenology model developed for the Pinot Noir grape. Our results reveal that temperatures as high as those reached in the 1990s have occurred ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Zhu, Dan; Ciais, Philippe; Chang, Jinfeng; Krinner, Gerhard; Peng, Shushi; Viovy, Nicolas; Penuelas, Josep; Zimov, Sergey A (2018): The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum. Nature Ecology & Evolution, https://doi.org/10.1038/s41559-018-0481-y
    Publication Date: 2023-01-13
    Description: Large herbivores are a major agent in ecosystems, influencing vegetation structure and carbon and nutrient flows. Yet most of the current global dynamic vegetation models (DGVMs) lack explicit representation of large herbivores. Here we incorporated a grazing module in the ORCHIDEE-MICT DGVM based on physiological and demographic equations for wild large grazers, taking into account the feedbacks of large grazers on vegetation. The model was applied globally for present-day and the last glacial maximum (LGM). Three NetCDF files are included, corresponding to the model results for three periods: present-day (1960-2009 average), pre-industrial (1860-1899 average), and the last glacial maximum (ca. 21 ka before present). Variables include the modeled potential grazer biomass/population density, along with the directly relevant outputs: vegetation distribution (i.e. fractional coverage of the plant functional types), and gross and net primary productivity. Detailed model descriptions and the simulation setup can be found in: Zhu et al. (2018).
    Keywords: File content; File format; File name; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 15 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use and land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2008–2017), EFF was 9.4±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.7±0.02 GtC yr−1, SOCEAN 2.4±0.5 GtC yr−1, and SLAND 3.2±0.8 GtC yr−1, with a budget imbalance BIM of 0.5 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in EFF was about 1.6 % and emissions increased to 9.9±0.5 GtC yr−1. Also for 2017, ELUC was 1.4±0.7 GtC yr−1, GATM was 4.6±0.2 GtC yr−1, SOCEAN was 2.5±0.5 GtC yr−1, and SLAND was 3.8±0.8 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0±0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959–2017, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018, 2016, 2015a, b, 2014, 2013)
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-08
    Description: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the high fossil emissions and the small SLAND consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.0 % (range of 0.8 to 3.0 %) based on national emissions projections for China, USA, and India, and projections of gross domestic product (GDP) corrected for recent changes in the carbon intensity of the economy for the rest of the world. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016, 2015b, a, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017 (GCP, 2017).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2006–2015), EFF was 9.3 ± 0.5 GtC yr−1, ELUC 1.0 ± 0.5 GtC yr−1, GATM 4.5 ± 0.1 GtC yr−1, SOCEAN 2.6 ± 0.5 GtC yr−1, and SLAND 3.1 ± 0.9 GtC yr−1. For year 2015 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1, showing a slowdown in growth of these emissions compared to the average growth of 1.8 % yr−1 that took place during 2006–2015. Also, for 2015, ELUC was 1.3 ± 0.5 GtC yr−1, GATM was 6.3 ± 0.2 GtC yr−1, SOCEAN was 3.0 ± 0.5 GtC yr−1, and SLAND was 1.9 ± 0.9 GtC yr−1. GATM was higher in 2015 compared to the past decade (2006–2015), reflecting a smaller SLAND for that year. The global atmospheric CO2 concentration reached 399.4 ± 0.1 ppm averaged over 2015. For 2016, preliminary data indicate the continuation of low growth in EFF with +0.2 % (range of −1.0 to +1.8 %) based on national emissions projections for China and USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. In spite of the low growth of EFF in 2016, the growth rate in atmospheric CO2 concentration is expected to be relatively high because of the persistence of the smaller residual terrestrial sink (SLAND) in response to El Niño conditions of 2015–2016. From this projection of EFF and assumed constant ELUC for 2016, cumulative emissions of CO2 will reach 565 ± 55 GtC (2075 ± 205 GtCO2) for 1870–2016, about 75 % from EFF and 25 % from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015b, a, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2016).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, 〈 30∘ N) compared to mid-latitudes (∼ 30 %, 30–60∘ N) and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters. Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-12-15
    Description: Following the recent Global Carbon Project (GCP) synthesis of the decadal methane (CH4) budget over 2000–2012 (Saunois et al., 2016), we analyse here the same dataset with a focus on quasi-decadal and inter-annual variability in CH4 emissions. The GCP dataset integrates results from top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models (including process-based models for estimating land surface emissions and atmospheric chemistry), inventories of anthropogenic emissions, and data-driven approaches. The annual global methane emissions from top-down studies, which by construction match the observed methane growth rate within their uncertainties, all show an increase in total methane emissions over the period 2000–2012, but this increase is not linear over the 13 years. Despite differences between individual studies, the mean emission anomaly of the top-down ensemble shows no significant trend in total methane emissions over the period 2000–2006, during the plateau of atmospheric methane mole fractions, and also over the period 2008–2012, during the renewed atmospheric methane increase. However, the top-down ensemble mean produces an emission shift between 2006 and 2008, leading to 22 [16–32] Tg CH4 yr−1 higher methane emissions over the period 2008–2012 compared to 2002–2006. This emission increase mostly originated from the tropics, with a smaller contribution from mid-latitudes and no significant change from boreal regions. The regional contributions remain uncertain in top-down studies. Tropical South America and South and East Asia seem to contribute the most to the emission increase in the tropics. However, these two regions have only limited atmospheric measurements and remain therefore poorly constrained. The sectorial partitioning of this emission increase between the periods 2002–2006 and 2008–2012 differs from one atmospheric inversion study to another. However, all top-down studies suggest smaller changes in fossil fuel emissions (from oil, gas, and coal industries) compared to the mean of the bottom-up inventories included in this study. This difference is partly driven by a smaller emission change in China from the top-down studies compared to the estimate in the Emission Database for Global Atmospheric Research (EDGARv4.2) inventory, which should be revised to smaller values in a near future. We apply isotopic signatures to the emission changes estimated for individual studies based on five emission sectors and find that for six individual top-down studies (out of eight) the average isotopic signature of the emission changes is not consistent with the observed change in atmospheric 13CH4. However, the partitioning in emission change derived from the ensemble mean is consistent with this isotopic constraint. At the global scale, the top-down ensemble mean suggests that the dominant contribution to the resumed atmospheric CH4 growth after 2006 comes from microbial sources (more from agriculture and waste sectors than from natural wetlands), with an uncertain but smaller contribution from fossil CH4 emissions. In addition, a decrease in biomass burning emissions (in agreement with the biomass burning emission databases) makes the balance of sources consistent with atmospheric 13CH4 observations. In most of the top-down studies included here, OH concentrations are considered constant over the years (seasonal variations but without any inter-annual variability). As a result, the methane loss (in particular through OH oxidation) varies mainly through the change in methane concentrations and not its oxidants. For these reasons, changes in the methane loss could not be properly investigated in this study, although it may play a significant role in the recent atmospheric methane changes as briefly discussed at the end of the paper.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-12-15
    Description: The global methane (CH4) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH4 over the past decade. Emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH4 sources that overlap geographically, and from the destruction of CH4 by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (∼ biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models, inventories and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations). For the 2003–2012 decade, global methane emissions are estimated by top-down inversions at 558 Tg CH4 yr−1, range 540–568. About 60 % of global emissions are anthropogenic (range 50–65 %). Since 2010, the bottom-up global emission inventories have been closer to methane emissions in the most carbon-intensive Representative Concentrations Pathway (RCP8.5) and higher than all other RCP scenarios. Bottom-up approaches suggest larger global emissions (736 Tg CH4 yr−1, range 596–884) mostly because of larger natural emissions from individual sources such as inland waters, natural wetlands and geological sources. Considering the atmospheric constraints on the top-down budget, it is likely that some of the individual emissions reported by the bottom-up approaches are overestimated, leading to too large global emissions. Latitudinal data from top-down emissions indicate a predominance of tropical emissions (∼ 64 % of the global budget, 〈 30° N) as compared to mid (∼ 32 %, 30–60° N) and high northern latitudes (∼ 4 %, 60–90° N). Top-down inversions consistently infer lower emissions in China (∼ 58 Tg CH4 yr−1, range 51–72, −14 %) and higher emissions in Africa (86 Tg CH4 yr−1, range 73–108, +19 %) than bottom-up values used as prior estimates. Overall, uncertainties for anthropogenic emissions appear smaller than those from natural sources, and the uncertainties on source categories appear larger for top-down inversions than for bottom-up inventories and models. The most important source of uncertainty on the methane budget is attributable to emissions from wetland and other inland waters. We show that the wetland extent could contribute 30–40 % on the estimated range for wetland emissions. Other priorities for improving the methane budget include the following: (i) the development of process-based models for inland-water emissions, (ii) the intensification of methane observations at local scale (flux measurements) to constrain bottom-up land surface models, and at regional scale (surface networks and satellites) to constrain top-down inversions, (iii) improvements in the estimation of atmospheric loss by OH, and (iv) improvements of the transport models integrated in top-down inversions. The data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (http://doi.org/10.3334/CDIAC/GLOBAL_METHANE_BUDGET_2016_V1.1) and the Global Carbon Project.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-12-13
    Description: Increasing atmospheric methane (CH4) concentrations have contributed to approximately 20% of anthropogenic climate change. Despite the importance of CH4 as a greenhouse gas, its atmospheric growth rate and dynamics over the past two decades, which include a stabilization period (1999–2006), followed by renewed growth starting in 2007, remain poorly understood. We provide an updated estimate of CH4 emissions from wetlands, the largest natural global CH4 source, for 2000–2012 using an ensemble of biogeochemical models constrained with remote sensing surface inundation and inventory-based wetland area data. Between 2000–2012, boreal wetland CH4 emissions increased by 1.2 Tg yr−1 (−0.2–3.5 Tg yr−1), tropical emissions decreased by 0.9 Tg yr−1 (−3.2−1.1 Tg yr−1), yet globally, emissions remained unchanged at 184 ± 22 Tg yr−1. Changing air temperature was responsible for increasing high-latitude emissions whereas declines in low-latitude wetland area decreased tropical emissions; both dynamics are consistent with features of predicted centennial-scale climate change impacts on wetland CH4 emissions. Despite uncertainties in wetland area mapping, our study shows that global wetland CH4 emissions have not contributed significantly to the period of renewed atmospheric CH4 growth, and is consistent with findings from studies that indicate some combination of increasing fossil fuel and agriculture-related CH4 emissions, and a decrease in the atmospheric oxidative sink.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...