GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (9)
Document type
Publisher
Years
  • 1
    Publication Date: 2017-06-19
    Description: The scleractinian cold-water corals (CWC) Lophelia pertusa and Madrepora oculata represent two major deep-sea reef-forming species that act as key ecosystem engineers over a wide temperature range, extending from the northern Atlantic (ca. 5–9 °C) to the Mediterranean Sea (ca. 11–13 °C). Recent research suggests that environmental parameters, such as food supply, settling substrate availability or aragonite saturation state may represent important precursors controlling habitat suitability for CWC. However, the effect of one principal environmental factor, temperature, on CWC key physiological processes is still unknown. In order to evaluate this effect on calcification, respiration, and dissolved organic carbon (DOC) net flux, colonies of Mediterranean L. pertusa and M. oculata were acclimated in aquaria to three temperatures (12, 9 and 6 °C), by consecutive decrements of 1 month duration. L. pertusa and M. oculata maintained at Mediterranean control conditions (i.e. 12 °C) displayed constant rates, on average respiring 4.8 and 4.0 µmol O2 cm−2 coral surface area d−1, calcifying 22.3 and 12.3 µmol CaCO3 g−1 skeletal dry weight d−1 and net releasing 2.6 and 3.1 µmol DOC cm−2 coral surface area d−1, respectively. Respiration of L. pertusa was not affected by lowered temperatures, while M. oculata respiration declined significantly (by 48%) when temperature decreased to 9 °C and 6 °C relative to controls. L. pertusa calcification at 9 °C was similar to controls, but decreased significantly (by 58%) at 6 °C. For M. oculata, calcification declined by 41% at 9 °C and by 69% at 6 °C. DOC net flux was similar throughout the experiment for both CWC. These findings reveal species-specific physiological responses by CWC within their natural temperature range. L. pertusa shows thermal acclimation in respiration and calcification, while these mechanisms appear largely absent in M. oculata. Conclusively, species-specific thermal acclimation may significantly affect the occurrence and local abundance of cosmopolitan CWC species, consequently influencing their important role in habitat engineering and ecosystem functioning in various thermal environments. Keywords
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-06-19
    Description: Dissolved organic matter, which contains many compounds such as lipids, sugars and amino acids, is an important source of carbon and nitrogen for several symbiotic and asymbiotic tropical coral species. However, there is still no information on its possible uptake by cold-water coral species. In this study, we demonstrated that dissolved organic matter, in the form of dissolved free amino acids (DFAA), is actively absorbed by four cold-water coral species from the Mediterranean Sea. Although the uptake rates observed with 3 µM DFAA concentration were one order of magnitude lower than those observed in tropical species, they corresponded to 12–50% of the daily excreted-nitrogen, and 16–89% of the daily respired-carbon of the cold-water corals. Consequently, DFAA, even at in situ concentrations lower than those tested in this study, can supply a significant amount of carbon and nitrogen to the corals, especially during periods when particulate food is scarce.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-06-20
    Description: The skeletal growth rate of the cold-water coral (CWC) Madrepora oculata Linnaeus, 1758 was measured during 3 months under controlled conditions (at 12 °C in the dark, fed five times a week), using the buoyant weight technique. In order to interpret CWC growth in a wider context, we also measured the skeletal growth rates of three tropical scleractinian species: Stylophora pistillata (Esper, 1797), Turbinaria reniformis (Bernard, 1896) and Galaxea fascicularis (Linnaeus, 1767), likewise maintained under controlled conditions (at 25 °C, 250 μmol photons m− 2 s− 1, either fed five times a week or unfed). The skeletal growth rate of M. oculata was equal to 0.20 ± 0.09% d− 1 (mean ± SD), similar to the growth of unfed and fed nubbins of G. fascicularis (0.14 ± 0.01% d− 1 and 0.36 ± 0.11% d− 1 respectively) despite the large differences in seawater temperatures. Skeletal growth rates of S. pistillata (1.20 ± 0.49% d− 1 to 2.68 ± 0.65% d− 1 unfed/fed) and T. reniformis (0.78 ± 0.34% d− 1 to 0.94 ± 0.14% d− 1 unfed/fed) were significantly higher. These results confirm that the CWC M. oculata can grow at rates that are comparable to those of some tropical corals, despite the lack of autotrophy (lacking zooxanthellae) and the low temperatures of its environment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-04
    Description: Highlights • Higher lipid content in D. cornigera in Cantabrian Sea than in Menorca Channel. • Lipid composition and δ13C values reflected contrasted food captured by corals. • Feeding on phytoplankton and herbivorous grazers by Cantabrian D. cornigera. • Main trophic role of dinoflagellates and invertebrates for Menorca D. cornigera. • High trophic plasticity of D. cornigera. Abstract The cold-water coral (CWC) Dendrophyllia cornigera is widely distributed in areas of both high and low productivity, suggesting a significant trophic plasticity of this coral depending on the food available in the environment. In this study, lipid biomarkers and their isotopic signature were compared in colonies of D. cornigera and sediment from the highly productive Cantabrian Sea (Northeast Atlantic Ocean) and the less productive Menorca Channel (Western Mediterranean Sea). Lipid content and composition in coral tissue clearly reflected the contrasting productivity in the two areas. Cantabrian corals presented higher content in fatty acids (FA), fatty alcohols and sterols than Menorca corals. Energy storage (saturated + mono-unsaturated FA) to structural (poly-unsaturated FA) ratio was higher in Cantabrian than in Menorca corals. The high ΣC20:1 content as well as PUFA(n-3)/PUFA(n-6) ratio suggest that Cantabrian corals mainly feed on phytoplankton and herbivorous grazers. This is also supported by the higher mono-unsaturated fatty alcohols (MUOH) and long chain mono-unsaturated fatty alcohols (LCMUOH) content in Cantabrian compared to Menorca corals. Conversely, higher PUFA(n-6) content in Menorca corals, with the dominance of C22:4(n-6) and C20:4(n-6), as well as the dominance of cholesterol and norC27Δ5,22 among sterols, point to a higher trophic role of dinoflagellates and invertebrates. The observed geographical variability in trophic ecology supports a high trophic plasticity of D. cornigera, which may favour the wide distribution of this CWC in areas with highly contrasted food availability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-12-07
    Description: The present study investigates the influence of environmental (temperature, salinity) and biological (growth rate, inter-generic variations) parameters on calcium isotope fractionation (δ44/40Ca) in scleractinian coral skeleton to better constrain this record. Previous studies focused on the δ44/40Ca record in different marine organisms to reconstruct seawater composition or temperature, but only few studies investigated corals. This study presents measurements performed on modern corals from natural environments (from the Maldives for modern and from Tahiti for fossil corals) as well as from laboratory cultures (Centre Scientifique de Monaco). Measurements on Porites sp., Acropora sp., Montipora verrucosa and Stylophora pistillata allow constraining inter-generic variability. Our results show that the fractionation of δ44/40Ca ranges from 0.6 to 0.1‰, independent of the genus or the environmental conditions. No significant relationship between the rate of calcification and δ44/40Ca was found. The weak temperature dependence reported in earlier studies is most probably not the only parameter that is responsible for the fractionation. Indeed, sub-seasonal temperature variations reconstructed by δ18O and Sr/Ca ratio using a multi-proxy approach, are not mirrored in the coral's δ44/40Ca variations. The intergeneric variability and intrageneric variability among the studied samples are weak except for S. pistillata, which shows calcium isotopic values increasing with salinity. The variability between samples cultured at a salinity of 40 is higher than those cultured at a salinity of 36 for this species. The present study reveals a strong biological control of the skeletal calcium isotope composition by the polyp and a weak influence of environmental factors, specifically temperature and salinity (except for S. pistillata). Vital effects have to be investigated in situ to better constrain their influence on the calcium isotopic signal. If vital effects could be extracted from the isotopic signal, the calcium isotopic composition of coral skeletons could provide reliable information on the calcium composition and budget in ocean. Highlights ► Corals cultured in aquaria or from natural environment show the same Ca isotopic composition. ► δ44/40Ca of coral skeleton is independent of depositional setting environment. ► Strong influence of vital effects on coral skeleton δ44/40Ca composition and calcification mechanisms
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-06-04
    Description: Food supply is one of the main factors driving cold-water corals (CWC) distribution, which often concentrate on ridges where local near-bed turbulence/strong currents enhance food availability. However, efficiency in food capture is strongly dependent on current velocity. Moreover, seawater temperature may also affect feeding success, since polyp contraction or nematocyst function could be slower at temperatures below the natural thermal range of a species. The non-reef forming CWC Dendrophyllia cornigera occurs in areas at temperatures from 11 to 17 °C, but is apparently absent from most CWC reefs at temperatures constantly below 11 °C. This study thus aimed to assess if a reduction in feeding capacity may contribute to understand the absence of this CWC from strictly cold environments. The efficiency of D. cornigera to capture meso- and macrozooplankton was assessed under different flow speeds (2, 5 and 10 cm s − 1) and temperatures (8, 12, and 16 °C). Flow speeds did not significantly affect the capture of mesozooplankton, whereas capture of macrozooplankton was significantly enhanced with increasing flow speed. Both meso- and macrozooplankton captures were not significantly affected by temperature in D. cornigera. Overall, this CWC species is efficient in capturing zooplankton under a larger range of flow velocities than the widespread CWC Lophelia pertusa, whose capture efficiency significantly decreased from low to high flow speeds. Even if temperature does not directly affect the capture rates of D. cornigera, it may still influence the feeding capacity of this CWC since the capture rates at 8 °C were always in the lowest range of the observed values at each flow speed, and corals maintained at 8 °C required a much longer time to fully expand their polyps once they were placed in the incubation chambers, than corals maintained at 12 and 16 °C.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-09-22
    Description: We show that the Li/Mg systematics of a large suite of aragonitic coral skeletons, representing a wide range of species inhabiting disparate environments, provides a robust proxy for ambient seawater temperature. The corals encompass both zooxanthellate and azooxanthellate species (Acropora sp., Porites sp., Cladocora caespitosa, Lophelia pertusa, Madrepora oculata and Flabellum impensum) collected from shallow, intermediate, and deep-water habitats, as well as specimens cultured in tanks under temperature-controlled conditions. The Li/Mg ratios observed in corals from these diverse tropical, temperate, and deep-water environments are shown to be highly correlated with temperature, giving an exponential temperature relationship of: Li/Mg (mmol/mol) = 5.41 exp (−0.049 * T) (r2 = 0.975, n = 49). Based on the standard error of the Li/Mg versus temperature correlation, we obtain a typical precision of ±0.9 °C for the wide range of species analysed, similar or better than that of other less robust coral temperature proxies such as Sr/Ca ratios. The robustness and species independent character of the Li/Mg temperature proxy is shown to be the result of the normalization of Li to Mg, effectively eliminating the precipitation efficiency component such that temperature remains as the main controller of coral Li/Mg compositions. This is inferred from analysis of corresponding Li/Ca and Mg/Ca ratios with both ratios showing strong microstructure-related co-variations between the fibrous aragonite and centres of calcification, a characteristic that we attribute to varying physiological controls on growth rate. Furthermore, Li/Ca ratios show an offset between more rapidly growing zooxanthellate and azooxanthellate corals, and hence only an approximately inverse relationship to seawater temperature. Mg/Ca ratios show very strong physiological controls on growth rate but no significant dependence with temperature, except possibly for Acropora sp. and Porites sp. A strong positive correlation is nevertheless found between Li/Ca and Mg/Ca ratios at similar temperatures, indicating that both Li and Mg are subject to control by similar growth mechanisms, specifically the mass fraction of aragonite precipitated during calcification, which is shown to be consistent with a Rayleigh-based elemental fractionation model. The highly coherent array defined by Li/Mg versus temperature is thus largely independent of coral calcification mechanisms, with the strong temperature dependence reflecting the greater sensitivity of the KdLi/Ca partition coefficient relative to KdMg/Ca. Accordingly, Li/Mg ratios exhibit a highly coherent exponential correlation with temperature, thereby providing a more robust tool for reconstructing paleo-seawater temperatures.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: Trophic relationships significantly influence ecosystem functioning, ultimately affecting populations’ abundance, size structure and distribution. There is still a substantial knowledge gap on the trophic ecology of deep-sea organisms, particularly those living in the mesophotic depths (30–150 m), despite their crucial importance as ecosystem engineers. The trophic ecology of the most common mesophotic black coral species of the Mediterranean Sea, Antipathella subpinnata (Ellis & Solander, 1786), was studied by means of stable isotopes analysis in two seasons. The δ13C and δ15N analysis of the tissue of A. subpinnata, of the sediment, as well as the main planktonic fractions (pico-nanoplankton, microplankton, and mesozooplankton) indicate a diet based on pico-nanoplankton in autumn and mesozooplankton in spring. We calculated a trophic enrichment of 1‰ in δ13C and of 2.5‰ δ15N between prey and predator. Such information contributes towards drawing a complete picture of the pelagic-benthic coupling in the Mediterranean mesophotic coral forests.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Highlights: • The cold-water coral Desmophyllum pertusum from reefs off Angola showed the same respiration rates at hypoxic and normoxic oxygen concentration. • The respiration rates measured are in the same order of magnitude as those previously observed for the species under normoxic conditions in other areas. Abstract: Large, well-developed and flourishing reefs dominated by the cold-water coral Desmophyllum pertusum have recently been discovered along the Angola margin in the southeastern Atlantic Ocean living under very low oxygen concentrations (0.6–1.5 mL L−1). This study assessed the respiration rates of this coral in a short-term (10 days) aquarium experiment under naturally low oxygen concentrations (1.4 ± 0.5 mL L−1) as well as under saturated oxygen concentrations (6.1 ± 0.6 mL L−1). We found no significant difference in respiration rates between the two oxygen concentrations. Furthermore, the respiration rates of D. pertusum were in the same order of magnitude as those of the same species living under normoxic conditions in other areas. This work expands the current knowledge on the metabolic activity of cold-water corals under hypoxic conditions, evidencing that low oxygen conditions are not a general limiting factor for the overall distribution of D. pertusum.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...