GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-08
    Description: About six million years ago, the Mediterranean Sea underwent a period of isolation from the ocean and widespread salt deposition known as the Messinian Salinity Crisis (MSC), allegedly leading to a kilometer-scale level drawdown by evaporation. One of the competing scenarios proposed for the termination of this environmental crisis 5.3 million years ago consists of a megaflooding event refilling the Mediterranean Sea through the Strait of Gibraltar: the Zanclean flood. The main evidence supporting this hypothesis is a nearly 390 km long and several hundred meters deep erosion channel extending from the Gulf of Cádiz (Atlantic Ocean) to the Algerian Basin (Western Mediterranean), implying the excavation of ca. 1000 km3 of Miocene sediment and bedrock. Based on the understanding obtained from Pleistocene onshore megaflooding events and using ad-hoc hydrodynamic modeling, here we explore two predictions of the Zanclean outburst flood hypothesis: 1) The formation of similar erosion features at sills communicating sub-basins within the Mediterranean Sea, specifically at the Sicily Sill; and 2) the accumulation of the eroded materials as megaflood deposits in areas of low flow energy. Recent data show a 6-km-wide amphitheater-shaped canyon preserved at the Malta Escarpment that may represent the erosional expression of the Zanclean flood after filling the western Mediterranean and spilling into the Eastern Basin. Next to that canyon, a ~1600 km3 accumulation of chaotic, seismically transparent sediment has been found in the Ionian Sea, compatible in age and facies with megaflood deposits. Another candidate megaflood deposit has been identified in the Alborán Sea in the form of elongated sedimentary bodies that parallel the flooding channel and are seismically characterized by chaotic and discontinuous stratified reflections, that we interpret as equivalent to gravel and boulder megabars described in terrestrial megaflood settings. Numerical model predictions show that sand deposits found at the Miocene/Pliocene (M/P) boundary in ODP sites 974 and 975 (South Balearic and Tyrrhenian seas) are consistent with suspension transport from the Strait of Gibraltar during a flooding event at a peak water discharge of ~108 m3 s−1.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Highlights • We analyse seismic stratigraphy of post-Messinian succession in west Ionian Basin. • Termination of Messinian salinity crisis consisted of a single-stage Zanclean flood. • Megaflood followed a sea level drawdown of 1900 m in eastern Mediterranean. • Fine, well-sorted sediments are predicted in the thicker sections of flood deposit. • NW Ionian Basin hosts evidence of episodic slope instability after 1.8 Ma. Abstract The Messinian salinity crisis was an extraordinary event that resulted in the deposition of kilometre-thick evaporite sequences in the Mediterranean Sea after the latter became disconnected from the world's oceans. The return to fully and stable marine conditions at the end of the crisis is still subject to debate. Three main hypotheses, based on geophysical and borehole data, onshore outcrops and climate simulations, have been put forward. These include a single-stage catastrophic flood, a two-step reflooding scenario, and an overspill of Paratethyan water followed by Atlantic inflow. In this study, two research questions are addressed: (i) Which event marked the termination of the Messinian salinity crisis? (ii) What was the sea level in the eastern Mediterranean Sea during this event? Geophysical data from the western Ionian Basin are integrated with numerical simulations to infer that the termination of the crisis consisted of a single-stage megaflood following a sea level drawdown of 1900 m. This megaflood deposited an extensive sedimentary body with a chaotic to transparent seismic signature at the base of the Malta Escarpment. Fine, well-sorted sediments are predicted to have been deposited within the thicker sections of the flood deposit, whereas a more variable distribution of coarser sediments is expected elsewhere. The north-western Ionian Basin hosts evidence of episodic post-Messinian salinity crisis slope instability events in the last ~1.8 Ma. The largest of these emplaced a 〉200 km3 deposit and is associated with failure of the head of Noto Canyon (offshore SE Sicily). Apart from unravelling the final phase of the Messinian salinity crisis and the ensuing stratigraphic evolution of the western Ionian Basin, our results are also relevant to better understand megafloods, which are some of the most catastrophic geological processes on Earth and Mars.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-12
    Description: Carbonate escarpments are submarine limestone and dolomite cliffs that have been documented in numerous sites around the world. Their geomorphic evolution is poorly understood due to difficulties in assessing escarpment outcrops and the limited resolution achieved by geophysical techniques across their steep topographies. The geomorphic evolution of carbonate escarpments in the Mediterranean Sea has been influenced by the Messinian salinity crisis (MSC). During the MSC (5.97–5.33 Ma), the Mediterranean Sea became a saline basin due to a temporary restriction of the Atlantic-Mediterranean seaway, resulting in the deposition of more than one million cubic kilometres of salt. The extent and relative chronology of the evaporative drawdown phases associated to the MSC remain poorly constrained. In this paper we combine geophysical and sedimentological data from the central Mediterranean Sea to reconstruct the geomorphic evolution of the Malta Escarpment and infer the extent and timing of evaporative drawdown in the eastern Mediterranean Sea during the MSC. We propose that, during a MSC base-level fall, fluvial erosion formed a dense network of canyons across the Malta Escarpment whilst coastal erosion developed extensive palaeoshorelines and shore platforms. The drivers of geomorphic evolution of the Malta Escarpment after the MSC include: (i) canyon erosion by submarine gravity flows, with the most recent activity taking place 〈2600 cal. years BP; (ii) deposition by bottom currents across the entire depth range of the Malta Escarpment; (iii) tectonic deformation in the southern Malta Escarpment in association with a wrench zone; (iv) widespread, small-scale sedimentary slope failures preconditioned by oversteepening and loss of support due to canyon erosion, and triggered by earthquakes. We carry out an isostatic restoration of the palaeoshorelines and shore platforms on the northern Malta Escarpment to infer an evaporative drawdown of 1800–2000 m in the eastern Mediterranean Sea during the MSC. We interpret the occurrence of pre-evaporite sedimentary lobes in the western Ionian Basin as suggesting that either evaporative drawdown and canyon formation predominantly occurred before salt deposition, or that only the latest salt deposition at the basin margin occurred after the formation of the sedimentary lobes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Highlights • We describe large sediment waves at the foot of the Malta Escarpment (Mediterranean). • Developed steadily since about 500 ka, the end of the Mid Pleistocene Transition. • Inferred alongslope Southward currents congruous with modern hydraulic conditions. • Role of paleoceanographic changes versus increased sediment input discussed. • Sediment cyclicity (5 cycles, 500 ka) extracted from power spectrum of seismic traces. A better understanding of the evolution of bottom current circulation and associated deposits is significant for many applications including paleoclimatology and geological hazard. Besides the large contourite drifts, bottom currents may generate fields of large sediment waves that, depending on their height and velocity of migration, may pose severe risk for infrastructures. Conversely, the time span of their paleoceanographic record is generally relatively short. We use bathymetry data, sub-bottom and seismic reflection profiles and legacy oceanographic data to analyze the sediment waves occurring in a deep environment (from 2400 to 3800 m water depth at the foot of the Malta Escarpment in the Mediterranean Sea) to understand their evolution in time, their significance for paleoceanography, and their relation to present day hydrographic conditions. In the absence of direct stratigraphic information, we use the information from nearby studies and from ODP Site 964 and DSDP Site 374 to constrain the age of the sedimentary successions. We discover that these waves (about 2.5 km in wavelength, 50 m in height, with crest sub-perpendicular to the continental slope trend) have been steadily growing and migrating northward since about 500 ka, although an irregular growth and unsteady migration is distinguishable since about 1800 ka. The waves are generated by predominantly alongslope southward flowing bottom currents compatible with modern hydraulic conditions (mean flow speed of ~5 cm s−1, peaks of 15 cm s−1). The rate of crest migration (~ 2.0–3.2 mm a−1) and the average sedimentation rate (0.64–0.69 mm a−1) are unusually high for deep sea environments away from turbidity currents paths. We infer that the steady development of sediment waves is produced by a drastic increase in sediment input to the Ionian Basin resulting from the tectonic uplift in NE Sicily and Calabria and the onset of a relatively steady, low energy bottom current regime following the Mid-Pleistocene Transition. We attempt to extract information on orbital cyclicity preserved in the seismic record from the power spectra of virtual seismic traces from the well preserved succession of 5 visually discernible, regularly spaced sub-units consisting of alternation of high-amplitude and low-reflectivity packages within the last 500 ka. Peaks in the power spectra can be identified around orbital obliquity and precession periodicities, while eccentricity appears not to be recorded. We discuss the results of seismic cyclicity analysis relative to uncertainties of stratigraphic and petrophysical constraints. The sediment waves along the foot of the Malta escarpment are an excellent candidate for the extraction of a long, continuous and high resolution sedimentary record of the paleo circulation changes and climate cycles in the Mediterranean Sea since about 500 ka.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-05-19
    Description: Reconstruction of Paleomagnetic Secular Variation (PSV) of the geomagnetic field is fundamental both to assess geodynamo models and to obtain age constraints for rocks, sediments and archaeological material. We present refined age-calibrated Holocene PSV and relative paleointensity (RPI) stack curves derived from Arctic marine sediments (Northwestern Barents Sea). The Holocene sections of four sedimentary cores were correlated on the basis of paleomagnetic trends and age models, and stacked. The resultant composite PSV and RPI Holocene records (NBS stack) and the reconstructed Holocene Virtual Geomag- netic Pole (VGP) path were evaluated in comparison with the most recent paleomagnetic stack curves and geomagnetic field models. The data indicate that during the Holocene time, the VGPs moved within the superficial projection of the inner core tangent cylinder, with the exception of short time intervals around 5600 and 3200 cal yr BP when VGPs extended to lower latitudes. These deviations might reflect regional geomagnetic features, such as persistent geomagnetic flux lobes at core-mantle boundary. Our data confirm that the large VGP shift observed around 5600 cal yr BP is the result of an increased radial magnetic field at the core-mantle boundary over North America, whilst the VGP shift around 3200 cal yr BP represents a major swing to middle latitudes toward the Middle East and might be associated to a regional high paleointensity peak, known as Levantine Iron Age Anomaly (LIAA).
    Description: Published
    Description: 106133
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Keywords: Paleomagnetism ; Geomagnetic paleosecular variation ; Relative paleointensity ; Marine sediment cores ; Arctic region ; Barents Sea ; Holocene ; Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...