GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Book
    Book
    Amsterdam [u.a.] : Elsevier
    Keywords: Marine sediments ; Konturit
    Type of Medium: Book
    Pages: XXII, 663 S. , Ill., graph. Darst., Kt. , 1 CD-ROM
    Edition: 1. ed.
    ISBN: 9780444529985
    Series Statement: Developments in sedimentology 60
    DDC: 551.4686
    Language: English
    Note: Literaturverz. S. 557 - 613
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Multichannel seismic reflection profiles from the continental rise west of the Antarctic Peninsula between 63° and 69°S show the growth of eight very large mound-shaped sedimentary bodies. MCS profiles and long-range side-scan sonar (GLORIA) images show the sea floor between mounds is traversed by channels originating in a dendritic pattern near the base of the continental slope. The mounds are interpreted as sediment drifts, constructed mainly from the fine-grained components of turbidity currents originating on the continental slope, entrained in a nepheloid layer within the ambient southwesterly bottom currents and redeposited downcurrent.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Bathymetry (seafloor depth), is a critical parameter providing the geospatial context for a multitude of marine scientific studies. Since 1997, the International Bathymetric Chart of the Arctic Ocean (IBCAO) has been the authoritative source of bathymetry for the Arctic Ocean. IBCAO has merged its efforts with the Nippon Foundation-GEBCO-Seabed 2030 Project, with the goal of mapping all of the oceans by 2030. Here we present the latest version (IBCAO Ver. 4.0), with more than twice the resolution (200 × 200 m versus 500 × 500 m) and with individual depth soundings constraining three times more area of the Arctic Ocean (∼19.8% versus 6.7%), than the previous IBCAO Ver. 3.0 released in 2012. Modern multibeam bathymetry comprises ∼14.3% in Ver. 4.0 compared to ∼5.4% in Ver. 3.0. Thus, the new IBCAO Ver. 4.0 has substantially more seafloor morphological information that offers new insights into a range of submarine features and processes; for example, the improved portrayal of Greenland fjords better serves predictive modelling of the fate of the Greenland Ice Sheet.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Highlights • We describe large sediment waves at the foot of the Malta Escarpment (Mediterranean). • Developed steadily since about 500 ka, the end of the Mid Pleistocene Transition. • Inferred alongslope Southward currents congruous with modern hydraulic conditions. • Role of paleoceanographic changes versus increased sediment input discussed. • Sediment cyclicity (5 cycles, 500 ka) extracted from power spectrum of seismic traces. A better understanding of the evolution of bottom current circulation and associated deposits is significant for many applications including paleoclimatology and geological hazard. Besides the large contourite drifts, bottom currents may generate fields of large sediment waves that, depending on their height and velocity of migration, may pose severe risk for infrastructures. Conversely, the time span of their paleoceanographic record is generally relatively short. We use bathymetry data, sub-bottom and seismic reflection profiles and legacy oceanographic data to analyze the sediment waves occurring in a deep environment (from 2400 to 3800 m water depth at the foot of the Malta Escarpment in the Mediterranean Sea) to understand their evolution in time, their significance for paleoceanography, and their relation to present day hydrographic conditions. In the absence of direct stratigraphic information, we use the information from nearby studies and from ODP Site 964 and DSDP Site 374 to constrain the age of the sedimentary successions. We discover that these waves (about 2.5 km in wavelength, 50 m in height, with crest sub-perpendicular to the continental slope trend) have been steadily growing and migrating northward since about 500 ka, although an irregular growth and unsteady migration is distinguishable since about 1800 ka. The waves are generated by predominantly alongslope southward flowing bottom currents compatible with modern hydraulic conditions (mean flow speed of ~5 cm s−1, peaks of 15 cm s−1). The rate of crest migration (~ 2.0–3.2 mm a−1) and the average sedimentation rate (0.64–0.69 mm a−1) are unusually high for deep sea environments away from turbidity currents paths. We infer that the steady development of sediment waves is produced by a drastic increase in sediment input to the Ionian Basin resulting from the tectonic uplift in NE Sicily and Calabria and the onset of a relatively steady, low energy bottom current regime following the Mid-Pleistocene Transition. We attempt to extract information on orbital cyclicity preserved in the seismic record from the power spectra of virtual seismic traces from the well preserved succession of 5 visually discernible, regularly spaced sub-units consisting of alternation of high-amplitude and low-reflectivity packages within the last 500 ka. Peaks in the power spectra can be identified around orbital obliquity and precession periodicities, while eccentricity appears not to be recorded. We discuss the results of seismic cyclicity analysis relative to uncertainties of stratigraphic and petrophysical constraints. The sediment waves along the foot of the Malta escarpment are an excellent candidate for the extraction of a long, continuous and high resolution sedimentary record of the paleo circulation changes and climate cycles in the Mediterranean Sea since about 500 ka.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-01
    Description: Mixed turbidite–contourite depositional systems result from interactions between down‐slope turbidity currents and along‐slope bottom currents, comprising excellent records of past oceanographic currents. Modern and ancient systems have been widely documented along the continental margins of the Atlantic Ocean. Yet, few examples have so far been identified on the North‐west African continental margin, limiting understanding of the sedimentary and palaeoceanographic evolution in this area. This work uses two‐dimensional seismic reflection profiles to report, for the first time, the presence of three giant sediment mounds beneath the headwall region of the Sahara Slide Complex. The sediment mounds are elongated and separated by two broad canyons, showing a north‐west/south‐east orientation that is roughly perpendicular to the continental margin. These mounds are 24 to 37 km long and 12 to 17 km wide, reaching a maximum height of ca 1000 m. Numerous slide scarps are observed within and along the flanks of the mounds, hinting at the occurrence of submarine landslides during their development. Based on their geometries, external shapes, internal seismic architecture and stratigraphic stacking patterns, it is proposed that these sediment mounds comprise down‐slope elongated mounded drifts formed in a mixed turbidite–contourite system during four evolutionary stages: onset, growth, maintenance and burial. The significance of this work is that it demonstrates the gradual transition from a turbidite system to a full mixed turbidite–contourite system to be associated, in the study area, with the establishment of strong ocean currents along north‐west Africa.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-03-16
    Keywords: AWI_GeoPhy; Description; Marine Geophysics @ AWI; Projection; Resolution; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 54 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lantzsch, Hendrik; Hanebuth, Till J J; Horry, Jan; Grave, Marina; Rebesco, Michele; Schwenk, Tilmann (2017): Deglacial to Holocene history of ice-sheet retreat and bottom current strength on the western Barents Sea shelf. Quaternary Science Reviews, 173, 40-57, https://doi.org/10.1016/j.quascirev.2017.08.016
    Publication Date: 2023-03-03
    Description: High-resolution sediment echosounder data combined with radiocarbon-dated sediment cores allowed us to reconstruct the Late Quaternary stratigraphic architecture of the Kveithola Trough and surrounding Spitsbergenbanken. The deposits display the successive deglacial retreat of the Svalbard-Barents Sea Ice Sheet. Basal subglacial till indicates that the grounded ice sheet covered both bank and trough during the Late Weichselian. A glaciomarine blanket inside the trough coinciding with laminated plumites on the bank formed during the initial ice-melting phase from at least 16.1 to 13.5 cal ka BP in close proximity to the ice margin. After the establishment of open-marine conditions at around 13.5 cal ka BP, a sediment drift developed in the confined setting of the Kveithola Trough, contemporary with crudely laminated mud, an overlying lag deposit, and modern bioclastic-rich sand on Spitsbergenbanken. The Kveithola Drift shows a remarkable grain-size coarsening from the moat towards the southern flank of the trough. This trend contradicts the concept of a separated drift (which would imply coarser grain sizes in proximity of the moat) and indicates that the southern bank is the main sediment source for the coarse material building up the Kveithola Drift. This depocenter represents, therefore, a yet undescribed combination of off-bank wedge and confined drift. Although the deposits inside Kveithola Trough and on Spitsbergenbanken display different depocenter geometries, time-equivalent grain-size changes imply a region-wide sediment-dynamic connection. We thus relate a phase of coarsest sediment supply (8.8-6.3 cal ka BP) to an increase in bottom current strength, which might be related to a stronger Atlantic Water inflow from the Southeast across the bank leading to winnowing and off-bank export of sandy sediments.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Zecchin, Massimo; Rebesco, Michele; Lucchi, Renata G; Caffau, Mauro; Lantzsch, Hendrik; Hanebuth, Till J J (2016): Buried iceberg-keel scouring on the southern Spitsbergenbanken, NW Barents Sea. Marine Geology, 382, 68-79, https://doi.org/10.1016/j.margeo.2016.10.005
    Publication Date: 2023-05-12
    Description: PARASOUND (3.5 kHz) subbottom echosounder profiles acquired on the southern Spitsbergenbanken, NW Barents Sea, show iceberg-keel scouring features which are buried by sediment that accumulated during the post Last Glacial Maximum (LGM) sea-level rise. Four acoustic units (Units 1 to 4 in stratigraphic order) were differentiated, based on the characterization of their acoustic facies and reflection surfaces. Unit 1 shows a chaotic internal structure and is interpreted as a glacial till, whereas the laminated Units 2 to 4 accumulated by sediment settling from suspension clouds and bottom currents during the last deglaciation phase. The top of Unit 2 was frequently incised by iceberg keels, resulting in up to 12 m deep ploughmarks which were later filled and buried by Unit 3 and 4 sediments. Three main paleo-evironmental changes controlled the evolution of the facies succession: (1) The major shift from till formation (Unit 1) below grounded ice to the accumulation of laminated sediments (Unit 2) which are inferred to reflect ice lifting and meltwater release; (2) Iceberg-keel scouring after sedimentation of Unit 2; (3) the probable abrupt termination of iceberg-keel scouring related to the glacio-eustatic sea-level rise. A linkage between these episodes of changes and short-lasting phases of rapid post LGM sea-level rise, such as meltwater pulses, is inferred, although further studies are needed to better understand the temporal and genetic relationships between the sedimentary events recognized in the Barents Sea and climate changes.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Arndt, Jan Erik; Schenke, Hans Werner; Jakobsson, Martin; Nitsche, Frank-Oliver; Buys, Gwen; Goleby, Bruce; Rebesco, Michele; Bohoyo, Fernando; Hong, Jong Kuk; Black, Jenny; Greku, Rudolf Kh; Udintsev, Gleb B; Barrios, Felipe; Reynoso-Peralta, Walter; Taisei, Morishita; Wigley, Rochelle (2013): The International Bathymetric Chart of the Southern Ocean Version 1.0 – A new bathymetric compilation covering circum-Antarctic waters. Geophysical Research Letters, 40(9), 1-7, https://doi.org/10.1002/grl.50413
    Publication Date: 2023-03-16
    Description: The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0 is a new digital bathymetric model (DBM) portraying the seafloor of the circum-Antarctic waters south of 60° S. IBCSO is a regional mapping project of the General Bathymetric Chart of the Oceans (GEBCO). IBCSO Version 1.0 DBM has been compiled from all available bathymetric data collectively gathered by more than 30 institutions from 15 countries. These data include multibeam and single beam echo soundings, digitized depths from nautical charts, regional bathymetric gridded compilations, and predicted bathymetry. Specific gridding techniques were applied to compile the DBM from the bathymetric data of different origin, spatial distribution, resolution, and quality. The IBCSO Version 1.0 DBM has a resolution of 500 x 500 m, based on a polar stereographic projection, and is publicly available together with a digital chart for printing from the project website (http://www.ibcso.org) and from the two data sets shown at the bottom of this page.
    Keywords: AWI_GeoPhy; Marine Geophysics @ AWI
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...