GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Publication Date: 2020-06-30
    Description: Benthic fauna refers to all fauna that live in or on the seafloor, which researchers typically divide into size classes meiobenthos (32/64 μm–0.5/1 mm), macrobenthos (250 μm–1 cm), and megabenthos (〉1 cm). Benthic fauna play important roles in bioturbation activity, mineralization of organic matter, and in marine food webs. Evaluating their role in these ecosystem functions requires knowledge of their global distribution and biomass. We therefore established the BenBioDen database, the largest open-access database for marine benthic biomass and density data compiled so far. In total, it includes 11,792 georeferenced benthic biomass and 51,559 benthic density records from 384 and 600 studies, respectively. We selected all references following the procedure for systematic reviews and metaanalyses, and report biomass records as grams of wet mass, dry mass, or ash-free dry mass, or carbon per m2 and as abundance records as individuals per m2. This database provides a point of reference for future studies on the distribution and biomass of benthic fauna.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Elementa Science of the Anthropocene 5 (2017): 4, doi:10.1525/elementa.203.
    Description: The deep sea encompasses the largest ecosystems on Earth. Although poorly known, deep seafloor ecosystems provide services that are vitally important to the entire ocean and biosphere. Rising atmospheric greenhouse gases are bringing about significant changes in the environmental properties of the ocean realm in terms of water column oxygenation, temperature, pH and food supply, with concomitant impacts on deep-sea ecosystems. Projections suggest that abyssal (3000–6000 m) ocean temperatures could increase by 1°C over the next 84 years, while abyssal seafloor habitats under areas of deep-water formation may experience reductions in water column oxygen concentrations by as much as 0.03 mL L–1 by 2100. Bathyal depths (200–3000 m) worldwide will undergo the most significant reductions in pH in all oceans by the year 2100 (0.29 to 0.37 pH units). O2 concentrations will also decline in the bathyal NE Pacific and Southern Oceans, with losses up to 3.7% or more, especially at intermediate depths. Another important environmental parameter, the flux of particulate organic matter to the seafloor, is likely to decline significantly in most oceans, most notably in the abyssal and bathyal Indian Ocean where it is predicted to decrease by 40–55% by the end of the century. Unfortunately, how these major changes will affect deep-seafloor ecosystems is, in some cases, very poorly understood. In this paper, we provide a detailed overview of the impacts of these changing environmental parameters on deep-seafloor ecosystems that will most likely be seen by 2100 in continental margin, abyssal and polar settings. We also consider how these changes may combine with other anthropogenic stressors (e.g., fishing, mineral mining, oil and gas extraction) to further impact deep-seafloor ecosystems and discuss the possible societal implications. 
    Description: A.K. Sweetman D.O.B. Jones and R. Danovaro acknowledge funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement 603418 (MIDAS), and the European Union Horizon 2020 research and innovation programme under grant agreement 689518 (MERCES). L.-A. Henry and J.M. Roberts acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 678760 (ATLAS).
    Keywords: Deep-sea ; Climate change ; Ecosystem functioning ; Biodiversity ; Benthos
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © Inter-Research, 2010. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 399 (2010): 1-14, doi:10.3354/meps08388.
    Description: Macrobenthos of the deep, northern Gulf of Mexico (GoM) was sampled with box cores (0.2 m2) along multiple cross-depth transects extending from depths of 200 m to the maximum depth of the basin at 3700 m. Bathymetric (depth) zonation of the macrofaunal community was documented for 6 major taxa (a total of 957 species) on the basis of shared species among geographic locations; 4 major depth zones were identified, with the 2 intermediate-depth zones being divided into east and west subzones. Change of faunal composition with depth reflects an underlying continuum of species replacements without distinct boundaries. The zonal patterns correlated with depth and detrital particulate organic carbon (POC) export flux estimated from remotely-sensed phytoplankton pigment concentrations in the surface water. The Mississippi River and its associated mesoscale eddies, submarine canyon, and deep sediment fan appear to influence the horizontal zonation pattern through export of organic carbon from the ocean surface and the adjacent continental margin. On the local scale, near-bottom currents may shape the zonation pattern by altering sediment grain size, food availability, and larval dispersal. This study suggests a macroecological relationship between depth, export POC flux, and zonation; parsimonious zonal thresholds need to be tested independently for other continental margin ecosystems.
    Description: This research was funded by the U.S. Department of Interior, Minerals Management Service, Contract No. 1435-01-99-CT-30991.
    Keywords: Northern Gulf of Mexico ; Deep sea ; Macrofauna ; Zonation ; Biogeography ; Community structure ; POC export flux ; Macroecology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-12
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-24
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:sec〉〈jats:title〉Aim〈/jats:title〉〈jats:p〉Within the intensively‐studied, well‐documented latitudinal diversity gradient, the deep‐sea biodiversity of the present‐day Norwegian Sea stands out with its notably low diversity, constituting a steep latitudinal diversity gradient in the North Atlantic. The reason behind this has long been a topic of debate and speculation. Most prominently, it is explained by the deep‐sea glacial disturbance hypothesis, which states that harsh environmental glacial conditions negatively impacted Norwegian Sea diversities, which have not yet fully recovered. Our aim is to empirically test this hypothesis. Specific research questions are: (1) Has deep‐sea biodiversity been lower during glacials than during interglacials? 〈jats:italic〉(〈/jats:italic〉2) Was there any faunal shift at the Mid‐Brunhes Event (MBE) when the mode of glacial–interglacial climatic change was altered?〈/jats:p〉〈/jats:sec〉〈jats:sec〉〈jats:title〉Location〈/jats:title〉〈jats:p〉Norwegian Sea, deep sea (1819–2800 m), coring sites MD992277, PS1243, and M23352.〈/jats:p〉〈/jats:sec〉〈jats:sec〉〈jats:title〉Time period〈/jats:title〉〈jats:p〉620.7–1.4 ka (Middle Pleistocene–Late Holocene).〈/jats:p〉〈/jats:sec〉〈jats:sec〉〈jats:title〉Taxa studied〈/jats:title〉〈jats:p〉Ostracoda (Crustacea).〈/jats:p〉〈/jats:sec〉〈jats:sec〉〈jats:title〉Methods〈/jats:title〉〈jats:p〉We empirically test the deep‐sea glacial disturbance hypothesis by investigating whether diversity in glacial periods is consistently lower than diversity in interglacial periods. Additionally, we apply comparative analyses to determine a potential faunal shift at the MBE, a Pleistocene event describing a fundamental shift in global climate.〈/jats:p〉〈/jats:sec〉〈jats:sec〉〈jats:title〉Results〈/jats:title〉〈jats:p〉The deep Norwegian Sea diversity was not lower during glacial periods compared to interglacial periods. Holocene diversity was exceedingly lower than that of the last glacial period. Faunal composition changed substantially between pre‐ and post‐MBE.〈/jats:p〉〈/jats:sec〉〈jats:sec〉〈jats:title〉Main conclusions〈/jats:title〉〈jats:p〉These results reject the glacial disturbance hypothesis, since the low glacial diversity is the important precondition here. The present‐day‐style deep Norwegian Sea ecosystem was established by the MBE, more specifically by MBE‐induced changes in global climate, which has led to more dynamic post‐MBE conditions. In a broader context, this implies that the MBE has played an important role in the establishment of the modern polar deep‐sea ecosystem and biodiversity in general.〈/jats:p〉〈/jats:sec〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wei, Chih-Lin; Kastner, Miriam; Spivack, Arthur J (2008): Chlorine stable isotopes and halogen concentrations in convergent margins with implications for the Cl isotopes cycle in the ocean. Earth and Planetary Science Letters, 266(1-2), 90-104, https://doi.org/10.1016/j.epsl.2007.11.009
    Publication Date: 2024-01-09
    Description: Chlorine stable isotopes (delta37Cl) and halogen concentrations (e.g. Br/Cl) in 168 pore Fluids and 23 serpentines and other solids from three subduction zones, the Nankai Trough, Costa Rica, and Mariana Forearc, provide critical information on fluid sources, flow paths, and reaction conditions. The delta37Cl values of pore fluids at the Nankai and Costa Rica subduction zones, are significantly more negative (minimum -7.8‰, 2 sigma +/- 0.3‰) than seawater value (0‰). At Nankai Trough, the minimum delta37Cl value is situated below the décollement and evolves laterally from -7.8‰ at the most arcward ODP Site 808, to -7.1‰ at Site 1174, not, vert, similar 2 km seaward from Site 808, and to -5.8‰ at the reference Site 1173. At Costa Rica, along the décollement the minimum delta37Cl value evolves from -5.5‰ at the most arcward ODP Site 1040/1254, to -3.2‰ at Site 1043/1255, ~1 km seaward, and to 0‰ at the reference Site 1039/1253. At both subduction zones, the Br/Cl ratios are higher than the seawater value (1.5 * 10**-3) and also show seaward evolutions. These pore fluids originate from greater depth arcward, at 〉= 250 °C, from hydrous mineral formation that preferentially incorporates 37Cl and excludes Br. In contrast, the delta37Cl values in the pore fluids at the Mariana serpentine mud volcanoes are higher than the seawater value (+ 0.3‰ to + 1.8‰); and the Br/Cl ratios are lower. These pore fluid values and the high Cl concentrations with positive delta37Cl values (+ 1.2 to + 6.0‰) in the serpentines, support that the upwelling pore fluid originates from dehydration of the subducting slab that releases water enriched in 37Cl, into the fluid phase. The constancy of the ocean delta37Cl over the past 200 Ma suggests that the isotopically fractionated chlorine in serpentinites and the Cl exchanged in subduction zones are efficiently recycled back into seawater. If the efficiency is 〈 100%, the residual would be transferred to the mantle, with a maximum Cl flux between 2 to 3 * 10**17 moles/Ma that would lead to an isotopic difference between the mantle and seawater over the age of the earth on the order of a few per mil.
    Keywords: 195-1200B; 195-1200E; Chloride; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP/ODP/IODP sample designation; Event label; Fluorine; Joides Resolution; Leg195; North Pacific Ocean; Ocean Drilling Program; ODP; Sample code/label; Sample comment; Thermal Ionization Mass Spectrometry (TIMS); δ37Cl
    Type: Dataset
    Format: text/tab-separated-values, 25 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-11
    Description: We used environmental niche modelling along with the best available species occurrence data and environmental parameters to model habitat suitability for key cold-water coral and commercially important deep-sea fish species under present-day (1951-2000) environmental conditions and to forecast changes under severe, high emissions future (2081-2100) climate projections (RCP8.5 scenario) for the North Atlantic Ocean (from 18°N to 76°N and 36°E to 98°W). This dataset contains a set of terrain (static in time) and environmental (dynamic in time) variables were used as candidate predictors of present-day (1951-2000) distribution and to forecast future (2081-2100) changes. All predictor variables were projected with the Albers equal-area conical projection centred in the middle of the study area. The terrain variable depth was extracted from a bathymetry grid built from two data sources: the EMODnet Digital Terrain Model (EMODnet, 2018) and the General Bathymetric Chart of the Oceans (GEBCO 2014; Weatherall et al., 2015). Slope (in degrees) was derived from the final bathymetry grid using the Raster package in R (Hijmans, 2016) and the Bathymetric Position Index (BPI) was computed using the Benthic Terrain Model 3.0 tool in ArcGIS 10.1 with an inner radius of 3 and an outer radius of 25 grid cells. In order to avoid extreme values, BPI was standardized using the scale function from the Raster package. Environmental variables of present-day and future conditions, including particulate organic carbon (POC) flux at 100-m depth (epc100, mg C m-2 d-1), bottom water dissolved oxygen concentration (µmol kg-1), pH, and potential temperature (°K) were downloaded from the Earth System Grid Federation (ESGF) Peer-to-Peer (P2P) enterprise system. The epc100 was converted to export POC flux at the seafloor using the Martin curve (Martin, Knauer, Karl, & Broenkow, 1987) following the equation: epc = epc100*(water depth/export depth)-0.858, and setting the export depth to 100 m. Near seafloor aragonite (Ωar) and calcite (Ωcal) saturation were also used as candidate predictors for habitat suitability of cold-water coral species. These saturation states were computed by dividing the bottom water carbonate ion concentration (mol m-3) by the bottom water carbonate ion concentration (mol m-3) for seawater in equilibrium with pure aragonite and calcite. Yearly means of these parameters were calculated for the periods 1951-2000 (historical simulation) and 2081-2100 (RCP8.5 or business-as-usual scenario) using the average values obtained from the Geophysical Fluid Dynamics Laboratory's ESM 2G model (GFDL-ESM-2G; Dunne et al., 2012), the Institut Pierre Simon Laplace's CM6-MR model (IPSL-CM5A-MR; Dufresne et al., 2013) and Max Planck Institute's ESM-MR model (MPI-ESM-MR; Giorgetta et al., 2013) within the Coupled Models Intercomparison Project Phase 5 (CMIP5) for each grid cell of the present study area.
    Keywords: ATLAS; A Trans-Atlantic assessment and deep-water ecosystem-based spatial management plan for Europe; Climate change; Deep-sea; environmental conditions; File format; File name; File size; habitat suitability modelling; North_Atlantic_region; RCP8.5; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 48 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-20
    Description: The data layers provided show current values for seawater temperature, pH, calcite and aragonite saturation (%), oxygen concentration, and particulate organic carbon (POC) flux to the seafloor at different depths (500, 1000, 2000, 3000, and 4000m) at the present day (1951-2000) and changes in these variables expected between 2041-2060 and 2081-2100 under different RCP scenarios. The data layers were generated following the methods described in Levin et al. (2020). In short, in 2019, we obtained the present day and future ocean projections for the different years which were compiled from all available data generated by Earth Systems Models as part of the Coupled Model Inter-comparison Project Phase 5 (CMIP5) to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Three Earth System Models, including GFDL‐ESM‐2G, IPSL‐CM5A‐MR, and MPI‐ESM‐MR were collected and multi-model averages of temperature, pH, O2 , export production at 100-m depth (epc100), carbonate ion concentration (co3), and carbonate ion concentration for seawater in equilibrium with aragonite (co3satarg) and calcite (co3satcalc) were calculated. The epc100 was converted to export POC flux at the seafloor using the Martin curve (Martin et al., 1987) following the equation: POC flux = export production*(depth/export depth)0.858. The export depth was set to 100 m, and the water depth using the ETOPO1 Global Relief Model (Amante and Eakins, 2008). Seafloor aragonite and calcite saturation were computed by dividing co3 by co3satarg and co3satcalc. All variableswere reported as the inter-annual mean projections between 1951-2000, 2041-2060, and 2081-2100. The data for calcite and aragonite saturation can be found in Morato et al. (2020).
    Keywords: Aragonite saturation; Atlantic_RCP2.6_4.5_8.5; Atlantic Ocean; Binary Object; Binary Object (File Size); Climate change data-layers; File content; iAtlantic; Integrated Assessment of Atlantic Marine Ecosystems in Space and Time; Model; O2; pH; POC flux; RCP2.6; RCP4.5; RCP8.5; Temperature
    Type: Dataset
    Format: text/tab-separated-values, 6 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-05-07
    Description: This dataset contain abundance data from Canadian Pacific, Arctic, and Atlantic Oceans from the intertidal zone to upper bathyal depths, encompassing 13 marine ecoregions. 35 benthic datasets that encompass 3,337 taxa (70% identified to species and 21% to genus) from 13,172 samples spanning 6,117 sites. Abiotic data from these ecoregions includes lat long, depth, latitude, chemical energy (export particulate organic carbon [POC] flux), thermal energy (bottom temperature), and seasonality of primary production on the benthic biodiversity.
    Keywords: alpha diversity; Arctic Ocean; Atlantic Ocean; benthic invertebrates; biodiversity conservation; Canada_I; energy-diversity relationship; marine protected area; Pacific Ocean; productivity-diversity relationship; seafloor biodiversity
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-05-07
    Keywords: alpha diversity; Arctic Ocean; Atlantic Ocean; benthic invertebrates; biodiversity conservation; Canada_I; energy-diversity relationship; marine protected area; Pacific Ocean; productivity-diversity relationship; seafloor biodiversity
    Type: Dataset
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet, 3.5 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...