GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
Years
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Mass-wasting. ; Electronic books.
    Description / Table of Contents: This book covers the geological, geophysical, engineering and environmental aspects of submarine slope failures. It focuses on understanding the full spectrum of challenges presented by this major coastal and offshore geohazard.
    Type of Medium: Online Resource
    Pages: 1 online resource (664 pages)
    Edition: 1st ed.
    ISBN: 9783319009728
    Series Statement: Advances in Natural and Technological Hazards Research Series ; v.37
    DDC: 551.468
    Language: English
    Note: Intro -- Preface -- Contents -- Part I Physical Properties of Sediments -- Chapter 1: Weak Layers: Their Definition and Classification from a Geotechnical Perspective -- 1.1 Introduction -- 1.2 Weak Layer Definition -- 1.3 Weak Layer Observations -- 1.4 Classification System from a Geotechnical Approach -- 1.5 Concluding Remarks -- References -- Chapter 2: Field Measurements to Investigate Submerged Slope Failures -- 2.1 Introduction -- 2.2 Interpretation Methods of Field Measurements -- 2.2.1 Relative Density -- 2.2.2 State Parameter -- 2.3 Application on Test Locations -- 2.4 Discussion -- 2.5 Conclusions and Recommendations -- References -- Chapter 3: Elemental Distribution and Microfabric Characterization Across a Buried Slump Scar: New Insights on the Long-Term Development and Reactivation of Scar Surfaces from a Microscopic Perspective -- 3.1 Introduction -- 3.2 Geological Setting -- 3.3 Investigation of Remineralization at the Unconformity -- 3.3.1 X-ray Computed Tomography (X-CT) -- 3.3.2 X-ray Fluorescence Spectroscopy (XRF) -- 3.3.3 Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDX) -- 3.4 Discussion and Conclusion -- References -- Chapter 4: Evidence for Mass Transport Deposits at the IODP JFAST-Site in the Japan Trench -- 4.1 Introduction -- 4.2 Background and Geological Setting -- 4.3 Material and Methods -- 4.3.1 Bathymetric Mapping -- 4.3.2 Sediment Core -- 4.3.2.1 Physical Properties -- 4.3.2.2 Pore-Water Analyses -- 4.4 Results -- 4.5 Discussion -- 4.5.1 Evidencing Mass Transport Deposits at the JFAST-Site -- 4.5.2 Estimating the Age of the MTD Formation -- 4.6 Conclusions -- References -- Chapter 5: Preliminary Investigations of Rheological Properties of Busan Clays and Possible Implications for DebrisFlow Modelling -- 5.1 Introduction -- 5.2 Materials and Methods -- 5.3 Results. , 5.3.1 Rheological Behaviour of the Busan Clays -- 5.4 Discussion -- 5.5 Conclusions -- References -- Chapter 6: Utilizing Cone Penetration Tests for Landslide Evaluation -- 6.1 Introduction -- 6.2 Site Characterization -- 6.3 Methods -- 6.3.1 In-Situ CPT Measurements -- 6.3.2 Physical and Mechanical Properties -- 6.4 Results and Discussion -- 6.4.1 Static CPT -- 6.4.2 Vibratory CPT -- 6.4.3 Dissipation Test -- 6.4.4 Liquefaction Analysis with CLiq Software -- 6.5 Summary and Conclusion -- References -- Chapter 7: Geomechanical Characterization of Submarine Volcano-Flank Sediments, Martinique, Lesser Antilles Arc -- 7.1 Introduction -- 7.2 Geomechanical Characterization -- 7.3 Results -- 7.3.1 Summary of Hole Stratigraphy -- 7.3.2 Consolidation State -- 7.3.3 Hydraulic Conductivity -- 7.4 Discussion and Conclusion -- References -- Part II Gas Hydrates and Role of Interstitial Fluids in Submarine Slope Failure -- Chapter 8: Interrelationship Between Sediment Fabric, Pore Volume Variations as Indicator for Pore Pressure Changes, and Sediment Shear Strength -- 8.1 Introduction -- 8.2 Method -- 8.3 Results -- 8.4 Discussion -- 8.4.1 Interplay: Sediment Strength and Pore Volume Changes -- 8.4.1.1 Effect of Grain Shape Complexity -- 8.4.2 Local Pore Volume Changes -- 8.5 Conclusions -- References -- Chapter 9: Slope Instability of Glaciated Continental Margins: Constraints from Permeability-Compressibility Tests and Hydrogeological Modeling Off Storfjorden, NW Barents Sea -- 9.1 Introduction -- 9.2 Data and Methods -- 9.3 Results -- 9.4 Discussion -- 9.5 Conclusions -- References -- Chapter 10: Baiyun Slide and Its Relation to Fluid Migration in the Northern Slope of Southern China Sea -- 10.1 Introduction -- 10.2 Geological Setting -- 10.3 Data and Methods -- 10.4 Results -- 10.4.1 Morphology and Distribution of Baiyun Slide. , 10.4.2 Seismic Indications of Gas and Fluid Migration -- 10.4.2.1 Active Faults Related to Gas and Fluid Migration -- 10.4.2.2 Gas Chimneys -- 10.5 Discussion -- 10.5.1 Relationship Between Fluid Migration and Slope Stability -- 10.5.2 Possible Trigger Mechanisms -- 10.6 Conclusions -- References -- Chapter 11: Post-failure Processes on the Continental Slope of the Central Nile Deep-Sea Fan: Interactions Between Fluid Seepage, Sediment Deformation and Sediment-Wave Construction -- 11.1 Introduction -- 11.2 Methods -- 11.3 Results -- 11.3.1 Architecture and Age of MTDs and Slope Deposits -- 11.3.2 Seabed Sediment Undulations -- 11.3.3 Sediment Pathways -- 11.4 Discussion -- 11.4.1 End-Members: Sediment Waves Versus Deformation Structures -- 11.4.2 Post-failure Slope Evolution -- 11.5 Conclusion -- References -- Chapter 12: Fluid Seepage in Relation to Seabed Deformation on the Central Nile Deep-Sea Fan, Part 1: Evidence from Sidescan Sonar Data -- 12.1 Introduction -- 12.2 Methods -- 12.3 Results -- 12.3.1 Erosional Furrows -- 12.3.2 Sediment Cracks -- 12.3.3 Carbonate Pavements -- 12.3.4 Hydroacoustic Flares -- 12.4 Discussion -- 12.4.1 Mid-slope Domain: Focused Fluid Flow Through MTDs -- 12.4.2 Western Undulations: Fluid Flow Along Faults Rooted in MTDs -- 12.4.3 Eastern Undulations: Exhumation of Fossil Carbonates -- 12.5 Conclusions -- References -- Chapter 13: Fluid Seepage in Relation to Seabed Deformation on the Central Nile Deep-Sea Fan, Part 2: Evidence from Multibeam and Sidescan Imagery -- 13.1 Introduction -- 13.2 Methods -- 13.3 Results -- 13.3.1 Faults and Fluid Indicators on Sub-bottom Profiles -- 13.3.2 Seabed Backscatter Anomalies at Differing Frequencies -- 13.3.3 Water Column Gas Flares -- 13.4 Discussion -- 13.4.1 Growth and Burial of Carbonate Pavements -- 13.4.2 Fluid Migration Along Fault Planes -- 13.5 Conclusions -- References. , Part III Slope Stability and Risk Assessment -- Chapter 14: Advances in Offshore Seismic Slope Stability: A Case History -- 14.1 Introduction -- 14.2 Geomorphological and Geotechnical Data -- 14.2.1 Site Investigations -- 14.2.2 Geomorphological Setting -- 14.2.3 Geotechnical and Geophysical Data Integration -- 14.2.4 Soil Sampling -- 14.2.5 Advanced Laboratory Testing -- 14.3 Stability Analyses -- 14.3.1 Conventional Approach -- 14.3.2 Dynamic Approach -- 14.4 Conclusions -- References -- Chapter 15: Size-Frequency Relationship of Submarine Landslides at Convergent Plate Margins: Implications for Hazard and Risk Assessment -- 15.1 Introduction -- 15.2 Tectonic Setting of the MA and CC Convergent Margins -- 15.3 MA and CC Slumps and Slides: Observations and Data -- 15.4 Size-Frequency Relationships -- 15.5 Discussion and Conclusion -- References -- Chapter 16: A Numerical Investigation of Sediment Destructuring as a Potential Globally Widespread Trigger for Large Submarine Landslides on Low Gradients -- 16.1 Introduction -- 16.1.1 Destructuring of Cemented Hemipelagic Clay as a Source of Overpressure -- 16.1.2 Aims and Approach -- 16.2 Methodology -- 16.2.1 Material Model -- 16.2.2 Model Description -- 16.2.3 Assumptions and Limitations -- 16.3 Results -- 16.4 Discussion -- 16.5 Conclusion -- References -- Chapter 17: How Stable Is the Nice Slope? - An Analysis Based on Strength and Cohesion from Ring Shear Experiments -- 17.1 Introduction and Geological Setting -- 17.2 Methods -- 17.2.1 Coring and Sedimentological Analysis -- 17.2.2 Shear Experiments with the Ring Shear Apparatus -- 17.2.3 Stability Assessment of the Nice Slope Sediments -- 17.3 Results -- 17.3.1 Sedimentological Analysis and Physical Properties -- 17.3.2 Frictional Behavior of the Nice Slope Sediments -- 17.3.3 Stability Assessment of the Nice Slope Sediments -- 17.4 Discussion. , References -- Chapter 18: Regional Slope Stability Assessment Along the Caucasian Shelf of the Black Sea -- 18.1 Introduction -- 18.2 Geological Engineering Conditions Along the Caucasian Shelf of the Black Sea -- 18.3 Methods -- 18.4 Regional Submarine Slope Stability Assessment Based on 1D Modelling -- 18.5 Local Submarine Slope Stability Assessment Based on 1D Modelling -- 18.5.1 Dzhubga -- 18.5.2 Novomikhailovsky -- 18.5.3 Tuapse -- 18.5.4 Ashe -- 18.5.5 Shahe -- 18.5.6 Dagomis -- 18.5.7 Kudepsta -- 18.6 Discussion and Conclusion -- References -- Chapter 19: A Semi-empirical Method to Assess Flow-Slide Probability -- 19.1 Introduction -- 19.2 Failure Mechanisms -- 19.2.1 Static Liquefaction -- 19.2.2 Breach Flow-Slide -- 19.3 Physical-Based Models -- 19.3.1 Static Liquefaction -- 19.3.2 Breach Flow-Slide -- 19.3.3 Applicability of Physical-Based Models -- 19.4 Empirical Method -- 19.4.1 Basic Information and Mean Flow-Slide Frequency -- 19.4.2 General Applicability to Other Regions in the Netherlands -- 19.4.3 Influence of Local Soil Characteristics and Slope Geometry -- 19.5 Semi-empirical Method -- 19.5.1 Determination of P(ZVliquefaction) -- 19.5.2 Determination of P(ZVbreachflow) -- 19.6 Concluding Remarks -- References -- Chapter 20: Submarine Slope Stability Assessment of the Central Mediterranean Continental Margin: The Gela Basin -- 20.1 Introduction -- 20.2 Geological Setting -- 20.3 Material and Methods -- 20.3.1 Shipboard and Laboratory Analysis -- 20.3.2 Overpressure Estimation -- 20.3.3 Slope Stability Analysis -- 20.4 Results -- 20.4.1 Physical and Geotechnical Properties -- 20.4.2 Slope Stability Analysis -- 20.5 Discussion -- 20.5.1 Preconditioning Factors -- 20.5.2 Triggering Factors -- 20.6 Conclusions -- References -- Part IV Monitoring, Observation and Repeated Surveys of Active Slope Failure Processes. , Chapter 21: The 1930 Landslide in Orkdalsfjorden: Morphology and Failure Mechanism.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Bremen : MARUM - Zentrum für Marine Umweltwissenschaften, Fachbereich Geowissenschaften, Universität Bremen
    Keywords: Forschungsbericht ; Schlammvulkan
    Type of Medium: Online Resource
    Pages: Online-Ressource
    Series Statement: Berichte aus dem MARUM und dem Fachbereich Geowissenschaften der Universität Bremen No. 312
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Bremen : MARUM - Zentrum für Marine Umweltwissenschaften, Fachbereich Geowissenschaften, Universität Bremen
    Keywords: Forschungsbericht ; Mittelmeer Ost ; Schlammvulkan
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (63 Seiten, 15,4 MB)
    Series Statement: Berichte aus dem MARUM und dem Fachbereich Geowissenschaften der Universität Bremen No. 309
    DDC: 550
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Geo-marine letters, Berlin : Springer, 1984, (2009), 1432-1157
    In: year:2009
    In: extent:7
    Description / Table of Contents: A numeric tool is presented for calculating volumes of topographic voids such as slump scars of landslides, canyons or craters (negative/concave morphology), or alternatively, bumps and hills (positive/convex morphology) by means of digital elevation models embedded within a geographical information system (GIS). In this study, it has been used to calculate landslide volumes. The basic idea is that a (singular) event (landslide, meteorite impact, volcanic eruption) has disturbed an intact surface such that it is still possible to distinguish between the former (undisturbed) landscape and the disturbance (crater, slide scar, debris avalanche). In such cases, it is possible to reconstruct the paleo-surface and to calculate the volume difference between both surfaces, thereby approximating the volume gain or loss caused by the event. I tested the approach using synthetically generated land surfaces that were created on the basis of Shuttle Radar Topography Mission data. Also, I show the application to two real cases, (1) the calculation of the volume of the Masaya Slide, a submarine landslide on the Pacific continental slope of Nicaragua, and (2) the calculation of the void of a segment of the Fish River Canyon, Namibia. The tool is provided as a script file for the free GIS GRASS. It performs with little effort, and offers a range of interpolation parameters. Testing with different sets of interpolation parameters results in a small range of uncertainty. This tool should prove useful in surface studies not exclusively on earth.
    Type of Medium: Online Resource
    Pages: 7 , graph. Darst
    ISSN: 1432-1157
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Konferenzschrift
    Type of Medium: Book
    Pages: A5 S., S. 1729-2153 , Ill., graph. Darst., Kt.
    Series Statement: International journal of earth sciences 103.2014,7
    Language: English
    Note: Literaturangaben
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Advances in geosciences, Katlenburg-Lindau : European Geosciences Union, 2003, (2009), 1680-7359
    In: year:2009
    In: extent:13
    Description / Table of Contents: Offshore south central Chile (35°S-42°S), the morphology of the lowermost continental slope and trench floor witnesses a voluminous submarine mass-wasting event. The blocky slide body deposited in the Chile Trench at 73°46'W 35°35'S was targeted for study during RRS JAMES COOK Cruise JC23 and termed Reloca Slide. Its size of about 24 km3, its steep and high headscarp, the spatial distribution of slide deposits and the cohesive nature of major slide blocks make it interesting to address the issue of tsunami generation. We have obtained seismic reflection data that partly reveal the internal structure of the slide body. Gravity core samples were retrieved that will allow the slide to be dated and linked to the history of sedimentation and slope stability along this particular segment of the Chilean convergent margin. At present we assume a Holocene age for the sliding event.
    Type of Medium: Online Resource
    Pages: 13 , graph. Darst
    ISSN: 1680-7359
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: Geography ; Oceanography ; Sedimentology ; Physical geography ; Konferenzschrift ; Aufsatzsammlung ; Meereskunde ; Massenbewegung
    Description / Table of Contents: Submarine mass movements are a hidden geohazard with large destructive potential for submarine installations and coastal areas. This hazard and associated risk is growing in proportion with increasing population of coastal urban agglomerations, industrial infrastructure, and coastal tourism. Also, the intensified use of the seafloor for natural resource production, and deep sea cables constitutes an increasing risk. Submarine slides may alter the coastline and bear a high tsunamogenic potential. There is a potential link of submarine mass wasting with climate change, as submarine landslides can uncover and release large amounts greenhouse gases, mainly methane, that are now stored in marine sediments. The factors that govern the stability of submarine slopes against failure, the processes that lead to slope collapses and the collapse processes by themselves need to be better understood in order to foresee and prepare society for potentially hazardous events. This book volume consists of a collection of cutting edge scientific research by international experts in the field, covering geological, geophysical, engineering and environmental aspects of submarine slope failures. The focus is on understanding the full spectrum of challenges presented by this major coastal and offshore geohazard
    Type of Medium: Book
    Pages: XVI, 683 S. , Ill., graph. Darst., Kt.
    ISBN: 9783319009711
    Series Statement: Advances in natural and technological hazards research 37
    DDC: 551.46
    Language: English
    Note: Literaturangaben , Physical properties of sedimentsGas hydrates and role of interstitial fluids in submarine slope failure -- Slope stability and risk assessment -- Monitoring, observation and repeated surveys of active slope failure processes -- Understanding failure processes from submarine landslide geomorphology -- Interaction between ocean circulation and MTDs -- Landslide generated tsunamis -- Long-term record of submarine landslides and MTD paleoseismology -- Outcrops of ancient submarine landslides.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 251(2008), 1/2, Seite 15-31, 1872-6151
    In: volume:251
    In: year:2008
    In: number:1/2
    In: pages:15-31
    Type of Medium: Online Resource
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 244(2007), 1/4, Seite 166-183, 1872-6151
    In: volume:244
    In: year:2007
    In: number:1/4
    In: pages:166-183
    Type of Medium: Online Resource
    Pages: Ill., graph. Darst., Kt
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  The De Gerlache Seamounts actually consist of two medium-sized guyots, with summits at depths of 350–600 m. Acoustic profiler data show no significant sediment on these guyots. Alkaline basalts dredged from the summit of the eastern guyot yield K/Ar ages between 20.1±1.0 and 23.2±1.2 Ma. Basement ridges and sediment-filled troughs between the guyots are associated with the prominent gravity anomaly extending north from the Antarctic margin. This structure possibly played a role in the guyot formation, however, the question of how the De Gerlache Seamounts are related to this gravity anomaly remains uncertain.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...