GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Keywords
Language
  • 1
    Keywords: Aufsatzsammlung ; Fossile Meerestiere ; Paläobiogeografie ; Artenreichtum ; Paläontologie ; Aufschluss ; Fundstätte ; Fossil ; Meeressediment ; Historische Geologie ; Geobiologie ; Palökologie ; Biodiversität ; Meeresökosystem ; Geologische Stätte ; Paläobiologie ; Umweltveränderung ; Auswirkung ; Historische Umweltforschung
    Type of Medium: Book
    Pages: vi, 402 Seiten , Illustrationen, Karten, Diagramme
    ISBN: 9781786205773
    Series Statement: Geological Society special publication no. 529
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-21
    Description: Thecideide brachiopods are an anomalous group of invertebrates. In this study, we discuss the evolution of thecideide brachiopods from the Triassic to the Holocene and base our results and conclusions on microstructure and texture measurements gained from electron backscatter diffraction (EBSD). In fossil and Recent thecideide shells, we observe the following mineral units: (1) nanometric to small granules; (2) acicles; (3) fibres; (4) polygonal crystals; and (5) large roundish crystals. We trace for thecideide shells the change of mineral unit characteristics such as morphology, size, orientation, arrangement and distribution pattern. Triassic thecideide shells contain extensive sections formed of fibres interspersed with large, roundish crystals. Upper Cretaceous to Pleistocene thecideide hard tissues consist of a matrix of minute to small grains reinforced by acicles and small polygonal crystals. Recent thecideide species form their shell of mineral units that show a wide range of shapes, sizes and arrangements. We find from Late Triassic to Recent a gradual decrease in mineral unit size, regularity of mineral unit morphology and orientation and the degree of calcite co‐orientation. While crystallite co‐orientation is the highest for fibrous microstructures, it is strikingly low for taxa that form their shell out of nanogranular to acicular mineral units. Our results indicate that Upper Jurassic species represent transitional forms between ancient taxa with fibrous shells and Recent forms that construct their shells of acicles and granules. We attribute the observed changes in microstructure and texture to be an adaptation to a different habitat and lifestyle associated with cementation to hard substrates.
    Description: H2020 Marie Skłodowska‐Curie Actions http://dx.doi.org/10.13039/100010665
    Description: WOA Institution: LUDWIG‐MAXIMILIANS‐UNIVERSITAET MUNCHEN
    Keywords: 560 ; Brachiopoda ; calcite crystals ; calcite fibre ; EBSD ; shell microstructure evolution ; thecideides
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: The loss of carbonate production during the Toarcian Oceanic Anoxic Event (T-OAE, ca. 183 Ma) is hypothesized to have been at least partly triggered by ocean acidification linked to magmatism from the Karoo-Ferrar large igneous province (southern Africa and Antarctica). However, the dynamics of acidification have never been directly quantified across the T-OAE. Here, we present the first record of temporal evolution of seawater pH spanning the late Pliensbachian and early Toarcian from the Lusitanian Basin (Portugal) reconstructed on the basis of boron isotopic composition (δ11B) of brachiopod shells. δ11B declines by ~1‰ across the Pliensbachian-Toarcian boundary (Pl-To) and attains the lowest values (~12.5‰) just prior to and within the T-OAE, followed by fluctuations and a moderately increasing trend afterwards. The decline in δ11B coincides with decreasing bulk CaCO3 content, in parallel with the two-phase decline in carbonate production observed at global scales and with changes in pCO2 derived from stomatal indices. Seawater pH had declined significantly already prior to the T-OAE, probably due to the repeated emissions of volcanogenic CO2. During the earliest phase of the T-OAE, pH increased for a short period, likely due to intensified continental weathering and organic carbon burial, resulting in atmospheric CO2 drawdown. Subsequently, pH dropped again, reaching the minimum in the middle of the T-OAE. The early Toarcian marine extinction and carbonate collapse were thus driven, in part, by ocean acidification, similar to other Phanerozoic events caused by major CO2 emissions and warming.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-31
    Description: Fossil brachiopod shells are often used as valuable archives to reconstruct paleoenvironmental conditions in deep time. However, biomineralization processes can impact their fidelity as geochemical proxies. Brachiopod shells comprise an outer primary layer, a secondary fibrous layer and sometimes, a tertiary columnar layer. Therefore, it is essential to assess the potential effects of the biomineralization processes in each of the different shell microstructures of modern brachiopods. This study analyses the oxygen isotopic composition together with Li/Ca, Na/Ca Mg/Ca and Sr/Ca data at high spatial (20-50 μm) resolution in seven modern brachiopod species, focusing on differences between the primary, secondary and tertiary layers. In all studied species, δ18O values of the outer primary layer are consistently out of equilibrium with seawater. Also, this shell layer is enriched in Li, Na, Mg and Sr. Contrary to the primary layer, the innermost secondary layer is near or at oxygen isotopic and elemental equilibrium with ambient seawater. The columnar tertiary shell layer, if present, has the least variable and the heaviest oxygen isotopic composition, within the range of equilibrium values with seawater. This tertiary layer, however, is depleted in minor and trace elements relative to the other shell layers. Thus, the tertiary layer is more suitable for oxygen isotopic studies, whereas the innermost secondary layer of the most mature parts of the shell is the best target in two-layered shells. While we do not observe any clear interspecific relationships between Mg/Ca and Sr/Ca ratios, on one hand, and environmental parameters such as temperature, salinity and pH, on the other hand, there is a positive interspecific relationship between Na/Ca and salinity and a negative interspecific relationship between Li/Ca and temperature, suggesting their potential use as proxies of physicochemical parameters of seawater.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Thecideide brachiopods are an anomalous group of invertebrates. In this study, we discuss the evolution of thecideide brachiopods from the Triassic to the Holocene and base our results and conclusions on microstructure and texture measurements gained from electron backscatter diffraction (EBSD). In fossil and Recent thecideide shells, we observe the following mineral units: (1) nanometric to small granules; (2) acicles; (3) fibres; (4) polygonal crystals; and (5) large roundish crystals. We trace for thecideide shells the change of mineral unit characteristics such as morphology, size, orientation, arrangement and distribution pattern. Triassic thecideide shells contain extensive sections formed of fibres interspersed with large, roundish crystals. Upper Cretaceous to Pleistocene thecideide hard tissues consist of a matrix of minute to small grains reinforced by acicles and small polygonal crystals. Recent thecideide species form their shell of mineral units that show a wide range of shapes, sizes and arrangements. We find from Late Triassic to Recent a gradual decrease in mineral unit size, regularity of mineral unit morphology and orientation and the degree of calcite co‐orientation. While crystallite co‐orientation is the highest for fibrous microstructures, it is strikingly low for taxa that form their shell out of nanogranular to acicular mineral units. Our results indicate that Upper Jurassic species represent transitional forms between ancient taxa with fibrous shells and Recent forms that construct their shells of acicles and granules. We attribute the observed changes in microstructure and texture to be an adaptation to a different habitat and lifestyle associated with cementation to hard substrates.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Lithium has proven a powerful tracer of weathering processes and chemical seawater evolution. Skeletal components of marine calcifying organisms, and in particular brachiopods, present promising archives of Li signatures. However, Li incorporation mechanisms and potential influence from biological processes or environmental conditions require a careful assessment. In order to constrain Li systematics in brachiopod shells, we present Li concentrations and isotope compositions for 11 calcitic brachiopod species collected from six different geographic regions, paralleled with data from culturing experiments where brachiopods were grown under varying environmental conditions and seawater chemistry (pH–pCO2, temperature, Mg/Ca ratio). The recent brachiopod specimens collected across different temperate and polar environments showed broadly consistent δ7Li values ranging from 25.2 to 28.1‰ (with mean δ7Li of 26.9 ± 1.5‰), irrespective of taxonomic rank, indicating that incorporation of Li isotopes into brachiopod shells is not strongly affected by vital effects related to differences among species. This results in Δ7Licalcite–seawater values (per mil difference in 7Li/6Li between brachiopod calcite shell and seawater) from −2.9‰ to −5.8‰ (with mean Δ7Licalcite–seawater value of −3.6‰), which is larger than the Δ7Licalcite–seawater values calculated based on data from planktonic foraminifera (~0‰ to ~−4‰). This range of values is further supported by results from brachiopods cultured experimentally. Under controlled culturing conditions simulating the natural marine environment, the Δ7Licalcite–seawater for Magellania venosa was −2.5‰ and not affected by an increase in temperature from 10 to 16 °C. In contrast, a decrease in Mg/Ca (or Li/Ca) ratio of seawater by addition of CaCl2 as well as elevated pCO2, and hence low-pH conditions, resulted in an increased Δ7Licalcite-seawater up to −4.6‰. Collectively, our results indicate that brachiopods represent valuable archives and provide an envelope for robust Li-based reconstruction of seawater evolution over the Phanerozoic.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-03-01
    Description: Quantifying the effects of taphonomic processes on species abundances in time-averaged death assemblages (DAs) is pivotal for paleoecological inference. However, fidelity estimates based on conventional "live-dead" comparisons are fundamentally ambiguous: (1) data on living assemblages (LAs) are based on a very short period of sampling and thus do not account for biological variability in the LA, (2) LAs are sampled at the same time as the DA and thus do not necessarily reflect past LAs that contributed to the DA, (3) compositions of LAs and DAs can be autocorrelated owing to shared cohorts, and (4) fidelity estimates are cross-scale estimates because DAs are time-averaged and LAs are not. Some portion of raw (total) live-dead (LD) variation in species composition thus arises from incomplete sampling of LAs and from biological temporal variation among LAs (together = premortem component of LD variation), as contrasted with new variation created by interspecific variation in population turnover and preservation rates and by the time-averaging of skeletal input (together = postmortem component of LD variation). To tackle these problems, we introduce a modified test for homogeneity of multivariate dispersions (HMD) in order to (1) account for temporal autocorrelation in composition between LAs and DAs and (2) decompose total LD compositional variation into premortem and postmortem components, and we use simulations to evaluate the contribution of within-habitat time-averaging on the postmortem component. Applying this approach to 31 marine molluscan data sets, each consisting of spatial replicates of LAs and DAs in a single habitat, we find that total LD variation is driven largely by variation among LAs. However, genuinely postmortem processes have significant effects on composition in 25-65% of data sets (depending on the metric) when the effects of temporal autocorrelation are taken into account using HMD. Had we ignored the effects of autocorrelation, the effects of postmortem processes would have been negligible, inflating the similarity between LAs and DAs. Simulations show that within-habitat time-averaging does not increase total LD variation to a large degree--it increases total LD variation mainly via increasing species richness, and decreases total LD variation by reducing dispersion among DAs. The postmortem component of LD variation thus arises from differential turnover and preservation and multi-habitat time-averaging. Moreover, postmortem processes have less effect on the compositions of DAs in habitats characterized by high variability among LAs than they have on DAs in temporally stable habitats, a previously unrecognized first-order factor in estimating postmortem sources of compositional variation in DAs.
    Print ISSN: 0094-8373
    Electronic ISSN: 0094-8373
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-22
    Description: Brachiopod shells are the most widely used geological archive for the reconstruction of the temperature and the oxygen isotope composition of Phanerozoic seawater. However, it is not conclusive whether brachiopods precipitate their shells in thermodynamic equilibrium. In this study, we investigated the potential impact of kinetic controls on the isotope composition of modern brachiopods by measuring the oxygen and clumped isotope compositions of their shells. Our results show that clumped and oxygen isotope compositions depart from thermodynamic equilibrium due to growth rate-induced kinetic effects. These departures are in line with incomplete hydration and hydroxylation of dissolved CO2. These findings imply that the determination of taxon-specific growth rates alongside clumped and bulk oxygen isotope analyses is essential to ensure accurate estimates of past ocean temperatures and seawater oxygen isotope compositions from brachiopods.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-23
    Description: The isotopic composition of Phanerozoic marine sediments provides important information about changes in seawater chemistry. In particular, the radiogenic strontium isotope (87Sr/86Sr) system is a powerful tool for constraining plate tectonic processes and their influence on atmospheric CO2 concentrations. However, the 87Sr/86Sr isotope ratio of seawater is not sensitive to temporal changes in the marine strontium (Sr) output flux, which is primarily controlled by the burial of calcium carbonate (CaCO3) at the ocean floor. The Sr budget of the Phanerozoic ocean, including the associated changes in the amount of CaCO3 burial, is therefore only poorly constrained. Here, we present the first stable isotope record of Sr for Phanerozoic skeletal carbonates, and by inference for Phanerozoic seawater (δ88/86Srsw), which we find to be sensitive to imbalances in the Sr input and output fluxes. This δ88/86Srsw record varies from ∼0.25‰ to ∼0.60‰ (vs. SRM987) with a mean of ∼0.37‰. The fractionation factor between modern seawater and skeletal calcite Δ88/86Srcc-sw, based on the analysis of 13 modern brachiopods (mean δ88/86Sr of 0.176±0.016‰, 2 standard deviations (s.d.)), is -0.21‰ and was found to be independent of species, water temperature, and habitat location. Overall, the Phanerozoic δ88/86Srsw record is positively correlated with the Ca isotope record (δ44/40Casw), but not with the radiogenic Sr isotope record ((87Sr/86Sr)sw). A new numerical modeling approach, which considers both δ88/86Srsw and (87Sr/86Sr)sw, yields improved estimates for Phanerozoic fluxes and concentrations for seawater Sr. The oceanic net carbonate flux of Sr (F(Sr)carb) varied between an output of -4.7x1010mol/Myr and an input of +2.3x1010mol/Myr with a mean of -1.6x1010mol/Myr. On time scales in excess of 100Myrs the F(Sr)carb is proposed to have been controlled by the relative importance of calcium carbonate precipitates during the “aragonite” and “calcite” sea episodes. On time scales less than 20Myrs the F(Sr)carb seems to be controlled by variable combinations of carbonate burial rate, shelf carbonate weathering and recrystallization, ocean acidification, and ocean anoxia. In particular, the Permian/Triassic transition is marked by a prominent positive δ88/86Srsw-peak that reflects a significantly enhanced burial flux of Sr and carbonate, likely driven by bacterial sulfate reduction (BSR) and the related alkalinity production in deeper anoxic waters. We also argue that the residence time of Sr in the Phanerozoic ocean ranged from ∼1Myrs to ∼20Myrs.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-04-01
    Description: Sediment grain size data for vibrocore PVL10-50, southern California shelf
    Keywords: bioturbation; California; Comment; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; geochronology; Grain size, mean; MV1211; PVL10-50_VC; sedimentation rate; Size fraction 〈 0.002 mm, clay; Size fraction 〈 0.063 mm, mud, silt+clay; Size fraction 〉 0.006 mm, silt; Size fraction 〉 0.063 mm, sand; Size fraction 〉 2 mm, gravel; Sorting in phi; surface mixed layer; taphonomic active zone; Temporal resolution in benthic assemblages; VC; Vibro corer
    Type: Dataset
    Format: text/tab-separated-values, 436 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...