GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Scaling (Social sciences). ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (514 pages)
    Edition: 1st ed.
    ISBN: 9780323907668
    Series Statement: Advances in Green and Sustainable Chemistry Series
    DDC: 541.37
    Language: English
    Note: Intro -- Scaling Up of Microbial Electrochemical Systems: From Reality to Scalability -- Copyright -- Contents -- Contributors -- Chapter 1: Microbial electrochemical systems -- 1.1. Introduction -- 1.2. Classification of METs -- 1.2.1. Microbial fuel cells (MFCs) -- 1.2.2. Microbial electrolysis cells (MECs) -- 1.2.3. Microbial solar cells (MSCs) -- 1.2.4. Microbial electrosynthesis cells (MESCs) -- 1.2.5. Microbial desalination cells (MDCs) -- 1.3. Conclusion -- Acknowledgments -- References -- Chapter 2: A review on scaling-up of microbial fuel cell: Challenges and opportunities -- 2.1. Introduction -- 2.2. MFC theory -- 2.3. Research gap of MFC -- 2.4. Operational and electrochemical limitations of MFC analysis -- 2.4.1. MFC start-up process -- 2.4.2. Wastewater -- 2.4.3. Electrode materials -- 2.4.4. Anode material -- 2.4.5. Cathode material -- 2.4.6. Design of MFC -- 2.4.7. Electrical network of MFC -- 2.5. Technology development solution -- 2.6. Techno-economic viability -- 2.6.1. Advantages of MFC -- 2.7. Pilot scale to industrial scale of MFC -- 2.8. Application of microbial fuel cell to the social relevance -- 2.8.1. Electricity generation -- 2.8.2. Bio-hydrogen production -- 2.8.3. Wastewater treatment -- 2.8.4. Biosensor -- 2.8.5. Desalination plants -- 2.9. Recent developments -- 2.10. Future improvements -- 2.11. Conclusion -- References -- Chapter 3: Electroactive biofilm and electron transfer in microbial electrochemical systems -- 3.1. Introduction -- 3.2. Electroactive microorganisms (EAMs) -- 3.3. Formation of electroactive biofilms (EABFs) -- 3.3.1. Anodic EABFs -- 3.3.2. Cathodic EABFs -- 3.4. Electron transfer mechanism -- 3.4.1. Anodic electron transfer -- 3.4.2. Cathodic electron transfer -- 3.5. Effect of design, operational, and biological parameters on electroactivity of EABFs -- 3.5.1. Design parameters. , 3.5.1.1. Effect of electrode materials and their characteristics -- 3.5.1.2. Influence of applied voltage or potential -- 3.5.2. Operational parameters -- 3.5.2.1. Effect of substrate on EABFs -- 3.5.2.2. Effect of temperature on EABFs -- 3.5.2.3. Effect of pH on EABFs -- 3.5.3. Biological parameters -- 3.6. Genetic engineering: An approach to enhance exoelectrogenesis -- 3.7. Applications of EABFs -- 3.8. Conclusions and future prospects -- Acknowledgments -- References -- Chapter 4: Role of electroactive biofilms in governing the performance of microbial electrochemical system -- 4.1. Introduction -- 4.2. Role of electroactive biofilms in MES -- 4.3. Strategies for development of EAB -- 4.3.1. Natural growth of EAB -- 4.3.2. Artificial induction of EAB -- 4.4. Microbes in EAB -- 4.4.1. Anodic EAB -- 4.4.1.1. Pure culture -- 4.4.1.2. Mixed culture -- 4.4.2. Cathodic EAB -- 4.5. Electron transfer in EAB -- 4.5.1. Direct ET -- 4.5.2. Indirect ET -- 4.6. Methods to study EAB -- 4.7. Dynamic of EAB application -- 4.8. Conclusion and future prospects -- References -- Chapter 5: Electroactive biofilm and electron transfer in the microbial electrochemical system -- 5.1. Introduction -- 5.2. Electroactive microorganism and biofilm formation -- 5.3. Factors affecting electroactive biofilm formation -- 5.3.1. System architecture -- 5.3.2. Biological parameters -- 5.3.3. Operating parameters -- 5.3.3.1. Effect of external resistance and redox potential -- 5.3.3.2. Substrate concentration and loading -- 5.3.3.3. Other factors (pH, temperature, oxygen, and shear rate) -- 5.4. Electron transfer mechanism in MES -- 5.4.1. Direct electron transfer from cell to the electrode -- 5.4.2. Mediated electron transfer -- 5.5. Tools and techniques to study electroactive biofilms and microbial community analysis -- 5.6. Conclusion and future prospects -- References. , Chapter 6: Electroactive biofilm and electron transfer in MES -- 6.1. Introduction -- 6.2. Electroactive biofilms (EABs) -- 6.3. Anodic electroactive biofilm -- 6.4. Cathodic electroactive biofilm -- 6.5. Mechanism of electron within anodic EAB -- 6.6. Mechanisms of electron transfer in cathodic EABs -- 6.7. Tools and techniques used to study EABs -- 6.8. Applications of EABs -- 6.9. Conclusion -- References -- Chapter 7: Bioelectroremediation of wastes using bioelectrochemical system -- 7.1. Introduction -- 7.2. Drawbacks of conventional bioremediation -- 7.3. Phytoremediation -- 7.4. BES for ground water remediation -- 7.5. Practical obstacles in GW remediation suggests BES application -- 7.6. In situ bioelectroremediation: Ideal step -- 7.7. Bioelectroremediation: Future perspectives -- 7.8. Conclusion -- References -- Chapter 8: Fiber-reinforced polymer (FRP) as proton exchange membrane (PEM) in single chambered microbial fuel cells (MFCs) -- 8.1. Introduction -- 8.2. Proton exchange membranes (PEM) -- 8.3. Present study -- 8.4. Designing and fabrication of single-chambered MFCs -- 8.5. Natural fiber-reinforced polymer (FRP) composite as PEM in MFCs -- 8.6. Substrates used in MFCs -- 8.7. Inocula used in MFCs -- 8.8. Experimental design -- 8.9. Results in terms of electricity generation -- 8.10. Results in terms of COD removal -- 8.11. Results of the comparison of different proton exchange membrane (PEM) used in MFC with commercially available PEM-b ... -- 8.12. Results in terms of electricity generation -- 8.13. Results in terms of COD removal -- 8.14. Conclusions -- References -- Chapter 9: Effects of biofouling on polymer electrolyte membranes in scaling-up of microbial electrochemical systems -- 9.1. Introduction -- 9.2. Causes of biofouling in polymer electrolyte membrane -- 9.3. Mechanism of polymer electrolyte membrane biofouling. , 9.4. Effects of biofouling on MES performance -- 9.5. Methods to analyze membrane biofouling -- 9.6. Challenges confronted in scaling-up of MES -- 9.7. Preventive measures of membrane biofouling -- 9.7.1. Pretreatment of PEMs -- 9.7.2. Surface coatings on PEM -- 9.7.3. Polymer electrolyte membrane composites -- 9.7.4. Quorum Quenching for membrane antifouling -- 9.8. Conclusion -- References -- Chapter 10: Advancement in electrode materials and membrane separators for scaling up of MES -- 10.1. Introduction -- 10.2. Designing of reactor to scale-up -- 10.3. Electrode modification in scaling-up of MES -- 10.4. Membrane separators in MES -- References -- Chapter 11: Scale-up of bioelectrochemical systems: Stacking strategies and the road ahead -- 11.1. Introduction -- 11.2. Scale-up: Issues and strategies -- 11.3. Stacking of BESs -- 11.4. Voltage reversal and prevention -- 11.5. Pilot-scale BESs for hydrogen/methane production -- 11.6. Scaled-up BESs for bioremediation -- 11.7. Conclusions and future perspective -- References -- Chapter 12: Application of microbial electrochemical system for industrial wastewater treatment -- 12.1. Introduction -- 12.2. Energy recovery in wastewater treatment systems -- 12.3. Industrial wastewater generation and the ecotoxicological impacts of the pollutants -- 12.3.1. Heavy metals -- 12.3.2. Emerging contaminants -- 12.4. Industrial wastewater treatment in microbial electrochemical systems -- 12.4.1. Microbial fuel cell -- 12.4.2. Microbial electrolysis cell -- 12.4.3. Microbial desalination cell -- 12.5. Recent advancements in scaling up microbial electrochemical systems -- 12.5.1. Design of MES used in scale-up applications -- 12.5.2. Influencing parameters related to scale up -- 12.5.3. Application of MES in industrial companies: Current status -- 12.5.4. Current challenges and future perspective. , 12.6. Economic and life cycle assessment -- 12.7. Conclusion -- References -- Chapter 13: Metabolic engineering and synthetic biology key players for improving efficacy of microbial fuel cell technology -- 13.1. Introduction -- 13.2. Classification or types and design of MFC for electricity generation -- 13.3. Molecular mechanisms of electron transfer by diverse microbial regimes or electrogens for MFC technology -- 13.4. Existing physical- and chemical-based approaches for improving the MFC performance -- 13.4.1. Anode and cathode modifications -- 13.5. Existing pitfalls or drawbacks of existing MFC technology -- 13.6. Metabolic engineering and synthetic biology impacts on improving MFC performance -- 13.7. Conclusion and future outlook -- Acknowledgment -- References -- Chapter 14: Microbial electrochemical platform: A sustainable workhorse for improving wastewater treatment and desalination -- 14.1. Introduction -- 14.2. Classification and general discussion about microbial electrochemical platform toward wastewater treatment and desa ... -- 14.3. Potential role of existing native microbial regime in wastewater treatment and desalination -- 14.4. Metabolic engineering and synthetic biology impacts on improving strains or M/Os to improve the performance of MES/ ... -- 14.5. Future outlook -- Acknowledgment -- References -- Chapter 15: Scaling-up of microbial electrochemical systems to convert energy from waste into power and biofuel -- 15.1. Introduction -- 15.2. Scale-up of MET from laboratory level to pilot level -- 15.2.1. Microbial fuel cell -- 15.2.2. Microbial electrolysis cell -- 15.2.3. Microbial electrosynthesis -- 15.2.4. Microbial desalination cell -- 15.3. Stacking of microbial electrochemical systems: A major perspective for scaling-up -- 15.3.1. Some case studies on large-scale implementation of MES. , 15.4. Continuous mode of operation of microbial electrochemical systems during scale-up.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Singapore : Springer Nature Singapore | Singapore : Imprint: Springer
    Keywords: Pollution. ; Botany. ; Nanotechnology.
    Description / Table of Contents: - Plant synthesized nanoparticles for dye degradation -- Plant-Mediated Green Synthesis of Nanoparticles for Photocatalytic Dye Degradation -- Plant-derived nanoparticles for heavy metal remediation -- Biomedical applications of phytonanotechnology -- Application of nanotechnology in plant secondary metabolites production -- Applications of Nanotechnology in Preservation and Development of the Plants: A Look Back -- Environmental applications of Phytonanotechnology: a promise to sustainable future -- Phytonanotechnological Approach for Silver Nanoparticles: Mechanistic Aspect, Properties and Reliable Heavy Metal Ion Sensing -- Plant Material Assisted Magnetic Nanoparticles (MNPs) for the Separation of Inorganic Pollutants -- Environmental Applications of Green Engineered Silver Nanoparticles -- Bioremediation of heavy metal contaminated sites using phytogenic nanoparticles -- Environmental applications of green engineered copper nanoparticles -- Plant mediated nanocomposites for water remediation -- Photocatalytic degradation of dye from various metal/metal oxides derived from diverse plants -- Phytonanotechnology for the removal of pollutants from the contaminated soil environment.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VI, 336 p. 54 illus., 49 illus. in color.)
    Edition: 1st ed. 2022.
    ISBN: 9789811948114
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Sewage-Purification-Technological innovations. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (724 pages)
    Edition: 1st ed.
    ISBN: 9780323900119
    Language: English
    Note: Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- 1 - Nanoadsorbents for scavenging emerging contaminants from wastewater -- 1.1 Introduction -- 1.2 Emerging contaminants -- 1.3 Occurrence of emerging contaminants in aquatic systems -- 1.4 Exposure pathways of emerging contaminants in the environment -- 1.5 Treatment technologies for removal of ECs -- 1.6 Conventional treatment methods -- 1.7 Emerging methods -- 1.7.1 Biological treatment method -- 1.7.2 Advanced oxidation process -- 1.8 Nanoadsorbents -- 1.9 Classification of nanoadsorbents -- 1.10 Methods for preparation of nanoadsorbents -- 1.11 Properties of nanoadsorbents -- 1.12 Mechanisms of nanoadsorption -- 1.13 The π-π interaction -- 1.14 Electrostatic interaction -- 1.15 Hydrophobic interaction -- 1.16 Hydrogen bonding -- 1.17 Factors affecting adsorption process -- 1.17.1 pH -- 1.17.2 Ionic strength -- 1.17.3 Dissolved organic matter -- 1.18 Conclusions -- References -- 2 - Treatment aspect of an emerging pollutant from Pharmaceutical industries using advanced oxidation process: past, curre ... -- 2.1 Introduction -- 2.2 Treatment technologies -- 2.2.1 Recovery process -- 2.2.2 Phase changing technologies -- 2.2.2.1 Adsorption -- 2.2.2.2 Membrane technology -- 2.2.3 Biological process -- 2.3 Advanced oxidation process -- 2.3.1 Nonphotochemical methods -- 2.3.1.1 Ozonation -- 2.3.1.2 Ozone and hydrogen peroxide (Peroxone) -- 2.3.2 Catalytic ozonation -- 2.3.3 Fenton system -- 2.3.3.1 Sulfate-based AOPs -- 2.3.4 Photochemical methods -- 2.3.4.1 O 3  + UV Method -- 2.3.4.2 H 2 O 2 +UV light Method -- 2.3.4.3 H 2 O 2 +UV+ O 3 Method -- 2.3.4.4 Photolysis -- 2.3.4.5 UV/persulfate -- 2.3.4.6 Photo-Fenton Method -- 2.3.4.7 Photocatalysis -- 2.3.4.8 Other AOPs -- 2.4 Future prospects -- References. , 3 - Membrane bioreactor (MBR) as an advanced wastewater treatment technology for removal of synthetic microplastics -- 3.1 Introduction -- 3.2 Microplastic generation and pollution -- 3.3 Effect of Synthetic microplastic pollution -- 3.4 Technical implementation of membrane bioreactor (MBR) for elimination micro plastic pollutants -- References -- 4 - Strategies to cope with the emerging waste water contaminants through adsorption regimes -- 4.1 Introduction -- 4.2 Uptake of pollutants from water via adsorption -- 4.3 Adsorbents and there use in purification of waters -- 4.4 Various emerging pollutants and their effects -- 4.4.1 Heavy metals -- 4.4.2 Dyes -- 4.4.3 Pharmaceuticals -- 4.4.4 Fluoride -- 4.4.5 Arsenic -- 4.4.6 Other emerging pollutants -- 4.5 Adsorption strategies for removal of emerging pollutants from waste waters -- 4.6 Adsorption of pollutants using hydrothermal carbonization: an environment safe procedure using carbon adsorbents -- 4.7 Use of hydrothermal carbonization (HTC) in adsorption -- 4.7.1 Dye adsorption -- 4.7.2 Pesticide(s) adsorption -- 4.7.3 Antibiotics/drugs adsorption -- 4.7.4 Endocrine disrupting chemicals (EDC) -- 4.8 Metals and metal ions adsorption by HTCs -- 4.9 Adsorption of metal(s) from mixture of metals -- 4.10 Adsorption of heavy metals using HTCs -- 4.11 Use of cost-effective adsorbent for adsorption of heavy metals -- 4.12 Uptake of metals using low-cost adsorbent materials -- 4.13 Use of agricultural residues as adsorbents -- 4.14 Uses of industrial wastes as adsorbents -- 4.14.1 Marine materials -- 4.14.2 Clay and zeolite -- 4.15 Adsorption/biosorption of antibiotics from waste water -- 4.16 Elimination of heavy metals via adsorption/biosorption -- 4.17 Heavy metals uptake using activated sludge and sludge-derived materials. , 4.18 Uptake of endocrine disrupting chemicals (EDC) -- 4.19 Future prospects -- 4.20 Conclusion -- References -- 5 - Performances of membrane bioreactor technology for treating domestic wastewater operated at different sludge retention ... -- 5.1 Introduction -- 5.1.1 Fundamentals of membrane bioreactors -- 5.1.2 Development of MBR studies -- 5.1.3 Membrane fouling in MBR systems -- 5.1.4 Performances of MBRs at high biomass retention -- 5.1.5 Task and purpose of the study -- 5.2 Materials and methods -- 5.2.1 Experimental setup -- 5.2.2 Sludge retention time -- 5.2.3 Analysis methods -- 5.3 Results and discussion -- 5.3.1 Effect of SRTs on sludge concentration in the system -- 5.3.2 Effects of SRT on sludge bioactivity -- 5.3.3 Effect of SRT on SVI and viscosity -- 5.3.4 Effects of SRT on COD removal in the system -- 5.4 Influence of SRT on sludge particle size distribution -- 5.5 Conclusions -- Acknowledgements -- Abbreviations -- References -- 6 - Advances in nanotechnologies of waste water treatment: strategies and emerging opportunities -- 6.1 Introduction -- 6.2 Metallic nanoparticles -- 6.3 Nanoadsorbents -- 6.4 Nanobiosorbents -- 6.5 Nanomembranes -- 6.6 Nanocatalysts -- 6.6.1 Photocatalyst based advance oxidation process -- 6.7 Conclusions -- Acknowledgements -- References -- 7 - Water and Wastewater Treatment through Ozone-based technologies -- 7.1 Introduction -- 7.2 Global water scenario -- 7.3 Strategies for solving the water shortage issues -- 7.4 Why ozone-based technologies used for water and wastewater treatment? -- 7.4.1 Advanced Oxidation Process (AOP) -- 7.4.2 Benefits of ozone (O 3 ) based treatment -- 7.5 Worldwide status, history, and background of O 3 based technology for drinking water and wastewater treatment -- 7.6 Use of ozone-based technology for disinfection. , 7.6.1 Mechanisms of Inactivation by Ozone -- 7.7 Treatment of municipal and industrial wastewater through Ozone-based technology -- 7.8 Removal of physical pollutants (odor and taste) through Ozone-based technologies -- 7.9 Removal of various chemical pollutants (COD, BOD and coloring agents) from wastewater through Ozone-based technologies -- 7.10 Factors affecting the Ozonation process -- 7.11 Conclusion and Future prospects -- References -- 8 - Constructed wetland: a promising technology for the treatment of hazardous textile dyes and effluent -- 8.1 Introduction -- 8.2 Classification of dyes -- 8.3 Impact of dye toxicity on environment -- 8.4 Impact of dye toxicity on living beings -- 8.5 Dye remediation strategies -- 8.5.1 Physical methods -- 8.5.2 Chemical methods -- 8.5.3 Biological methods -- 8.6 Constructed wetlands: a step towards technology transfer -- 8.7 Classification of constructed wetlands -- 8.8 Recent developments in textile wastewater treatments using constructed wetlands -- 8.9 Conclusion and future prospective -- References -- 9 - Biogenic nanomaterials: Synthesis, characteristics, and recent trends in combating hazardous pollutants (An arising sc ... -- 9.1 Introduction -- 9.2 History of nanotechnology and conventional synthetic routes of nanomaterials -- 9.3 Nanobiotechnology: An arising scientific horizon -- 9.3.1 Biologically fabricated NPs for the removal of hazardous water pollutants -- 9.3.1.1 Biologically fabricated NPs using bacteria and actinomycetes -- 9.3.1.2 Biologically fabricated NPs using fungi -- 9.3.1.3 Biologically fabricated NPs using yeast -- 9.3.1.4 Biologically fabricated NPs using algae -- 9.3.1.5 Biologically fabricated NPs using plant extracts -- 9.3.1.6 Biologically fabricated NPs using agro-industrial waste extracts. , 9.3.2 Possible mechanisms involved in biomimetic synthesis of NPs -- 9.3.2.1 Role of enzymes and proteins -- 9.3.2.2 Role of exopolysaccharides -- 9.4 Advantages, limitations, drawbacks, and future perspectives of nanobiotechnology -- 9.5 Conclusions -- References -- 10 - Removal of emerging contaminants from pharmaceutical wastewater through application of bionanotechnology -- 10.1 Introduction -- 10.2 Overview of contaminants in pharmaceutical wastewater -- 10.3 Applications of nanomaterials for the removal of pharmaceutical contaminants -- 10.3.1 Nanofiltration -- 10.3.2 Advanced oxidation process -- 10.3.3 Nanosorbents (nanotubes and zeolites) -- 10.4 Concluding remarks -- References -- 11 - Recent advances in pesticides removal using agroindustry based biochar -- 11.1 Introduction -- 11.2 What is biochar? -- 11.3 Characteristics of biochar -- 11.3.1 Porosity and surface area -- 11.3.2 pH -- 11.3.3 Functional groups at the surface -- 11.3.4 Carbon content and aromatic structures -- 11.3.5 Mineral composition -- 11.4 Modified biochar -- 11.5 Hazards of pesticides to environment and health -- 11.6 Recent development in pesticides sorption on biochar -- 11.6.1 Herbicides sorption -- 11.6.2 Insecticides sorption -- 11.6.3 Fungicides sorption -- 11.6.4 Nematicides sorption -- 11.7 Conclusion and future perspective -- References -- 12 - Bioremediation - the natural solution -- 12.1 Introduction -- 12.2 Characteristics of municipal wastewater -- 12.2.1 Organic impurities -- 12.2.2 Solids -- 12.2.3 Nutrients -- 12.2.3.1 Phosphorus -- 12.2.3.2 Nitrogen -- 12.2.3.3 Nitrogen present in municipal wastewater treatment plants (WWTPS) -- 12.2.4 Effects of phosphorus and nitrogen on environment -- 12.2.5 Pathogens -- 12.3 Wastewater treatment -- 12.3.1 Physical treatment -- 12.3.2 Chemical treatment. , 12.3.3 Thermal treatment.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Environmental engineering. ; Biotechnology. ; Bioremediation. ; Environmental protection. ; Civil engineering. ; Water. ; Hydrology. ; Refuse and refuse disposal.
    Description / Table of Contents: Assessment of industrial wastewater for future Bio-refinery -- Sewage water as potential bio-refinery -- Municipal waste water as potential bio-refinery -- Industrial waste water as potential bio-refinery -- Industrial Wastewater treatment technologies with prospective bio-refinery -- Bio-gas as a value generation from industrial waste water -- Bio-ethanol production as a promising approach of wastewater bio-refinery -- Bio-diesel production as a promising approach of industrial wastewater bio-refinery -- Electricity generation during industrial wastewater treatment -- Nutrient recovery and utilization from wastewater for soil less agriculture -- Bio prospecting of novel and industrially relevant enzymes -- Bio-fertilizer from industrial waste water -- Techno-economic feasibility analysis process for industrial waste water bio-refinery -- Case studies on recent development of waste water bio-refinery.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VII, 496 p. 69 illus., 56 illus. in color.)
    Edition: 1st ed. 2023.
    ISBN: 9783031208225
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Environmental engineering. ; Biotechnology. ; Bioremediation. ; Refuse and refuse disposal. ; Water. ; Hydrology. ; Chemistry. ; Pollution.
    Description / Table of Contents: Bioremediation: The solution to rising pollution -- Role of microbes in cleaning the environment -- Various approaches in bioremediation process -- New advances in use of microbial culture for industrial waste treatment -- Importance of aerobic bioremediation -- Anaerobic bioremediation: types, methods and implementations -- Removal of heavy metals using bio-remedial techniques -- Use of genetic engineering in bioremediation -- Microbes in industrial waste treatment -- Bioremediation of radioactive wastes -- Application of fungi in bioremediation -- Modern enhanced In-Situ techniques of bioremediation -- Advanced role of biosurfactants -- Nanotechnology for bioremediation of industrial wastewater treatment -- Emerging pollutants from the industries and their treatment.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(IX, 526 p. 54 illus., 42 illus. in color.)
    Edition: 1st ed. 2023.
    ISBN: 9783031240867
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Water. ; Hydrology. ; Biomaterials. ; Nanotechnology. ; Green chemistry. ; Sustainability. ; Environmental chemistry.
    Description / Table of Contents: Bionanotechnology: Concepts, historical developments, and applications -- Biogenic nanomaterials: Synthesis, characterization, and applications -- Biogenic synthesis of nanomaterials: Plant diversity -- Biogenic synthesis of nanomaterials: Microbial diversity- Algae, bacteria, fungi, and others -- Biogenic synthesis of nanomaterials: Bioactive compounds as reducing, and capping agents -- Role of bioactive compounds in synthesis of nanomaterials: insights -- Biogenic nanomaterials as antimicrobial agents -- Nanomaterials induced cell disruption: An insight into mechanism -- Nanomaterials in drug delivery -- Biogenic nanomaterials for degradation of organic and inorganic pollutants -- Biogenic nanomaterials as catalyst for photocatalytic dye degradation -- Biogenic nanomaterials as adsorbents for heavy metal remediation -- Biogenic nanomaterials for remediation of Polyaromatic Hydrocarbons -- Biogenic nanomaterials for remediation of pharmaceutical products -- Biogenic nanomaterials for remediation of biocides-insecticides, pesticides and others -- Metal nanoparticles and algal lipid synthesis: An insight -- Metal nanoparticles and microbial (algal) metabolism -- Nanomaterials to enhance algal lipid productivity: Recent advancements -- Biogenic nanomaterials as fuel additives -- Bionanotechnology: Opportunities and challenges.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VII, 508 p. 38 illus., 27 illus. in color.)
    Edition: 1st ed. 2024.
    ISBN: 9783031459566
    Series Statement: Environmental Science and Engineering
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Biotechnology. ; Nutrition . ; Natural products.
    Description / Table of Contents: Chapter 1. Cyanobacterial Cell Factories; Insight into Their Pharmaceutical and Nutraceutical Properties -- Chapter 2. Cyanobacterial Pigments: Pharmaceutical and Nutraceutical Applications -- Chapter 3. Spirulina as a Food of the Future -- Chapter 4. Potential of Cyanobacterial Biomass as an Animal Feed -- Chapter 5. Cost-Effective Cultivation of Cyanobacteria for Biotechnological Applications -- Chapter 6. Storage, Processing, and Stability of Phycobilins -- Chapter 7. Non-Conventional and Novel Strategies to Produce Spirulina Biomass -- Chapter 8. Cyanobacteria-based Green Synthesis of Nanoparticles for Industrial Applications -- Chapter 9. Cyanobacterial Bioactive Compounds; Synthesis, Extraction, and Applications -- Chapter 10. Threats, Challenges, and Issues of Large-Scale Cyanobacterial Cultivation -- Chapter 11. Cyanobacterial Exopolysaccharides; Extraction, Processing and Applications -- Chapter 12. Innovations in the Cyanobacteria-Based Biorefineries for Biopharmaceutical Industries -- Chapter 13. Cyanobacteria Biotechnology: Challenges and Prospects -- Chapter 14. Global Research Trends in Cyanobacteria; Bioproducts and Culture Collection.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XIV, 356 p. 47 illus., 42 illus. in color.)
    Edition: 1st ed. 2024.
    ISBN: 9783031455230
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Agriculture. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (580 pages)
    Edition: 1st ed.
    ISBN: 9780323918282
    Series Statement: Developments in Applied Microbiology and Biotechnology Series
    DDC: 579.17
    Language: English
    Note: IFC -- Half title -- Half title -- Copyright -- Contents -- Contributors -- 1 Pathogens control using mangrove endophytic fungi -- 1.1 An introduction of mangrove and endophytic fungi and natural compounds studies -- 1.2 Mangrove endophytic fungi and pathogen control -- 1.3 Bacteria control -- 1.4 Viruses control -- 1.5 Parasites control -- 1.6 Final considerations -- References -- 2 Endophytic fungi-mediated synthesis of gold and silver nanoparticles -- 1.1 Introduction -- 1.2 Gold nanoparticles -- 1.3 Silver nanoparticles -- 1.4 Conclusion and future prospect -- References -- 3 Endophytes: A novel tool for sustainable agriculture -- 3.1 Introduction -- 3.2 Biodiversity of endophytes -- 3.2.1 Fungal endophytes -- 3.2.2 Bacterial endophytes -- 3.2.3 Algal endophytes -- 3.3 Interaction between the endophytes and their host plants -- 3.4 Transmission of endophytes -- 3.4.1 Vertical transmission -- 3.4.2 Horizontal transmission -- 3.4.3 Transmission of fungal endophytes -- 3.4.4 Transmission of bacterial endophytes -- 3.5 Endophytes for environment and agriculture sustainablility -- 3.6 Applications of endophytes -- 3.6.1 Nutrient cycling -- 3.6.2 Plant growth promotion by endophytes -- 3.6.3 Bioremediation/biodegradation -- 3.6.4 The role of endophytic microorganisms in bioremediation -- 3.6.5 Future perspective -- 3.6.6 Phytostimulation -- 3.6.7 Phytoimmobilization -- 3.6.8 Phyto-transformation -- 3.6.9 Phytovolatilization -- 3.6.10 Biofertilization -- 3.6.11 Biocontrol -- 3.7 Impact of endophytes on bioactive compounds of host plant -- 3.8 Extracellular enzymes from endophytes -- 3.9 Conclusion -- References -- 4 The role of bioactive metabolites synthesized by endophytes against MDR human pathogens -- 4.1 Introduction -- 4.2 Mechanism of MDR development -- 4.2.1 Target protein mutation -- 4.2.2 MDR produced by biofilm formation. , 4.2.3 Enzyme-based inactivation of drugs -- 4.2.4 Efflux pumping mechanism -- 4.2.5 Alteration of porin structures -- 4.3 Types of endophytes and their associations -- 4.3.1 Endophytic fungi -- 4.3.2 Endophytic bacteria -- 4.3.3 Actinomycetes -- 4.3.4 Mycoplasma -- 4.4 Types of bioactive compounds -- 4.4.1 Secondary metabolites -- 4.4.2 Defense enzymes and phytohormones -- 4.4.3 Antimicrobial agents -- 4.4.4 Anticancer compounds -- 4.4.5 Antibiotics -- 4.5 Mechanism of screening and isolation -- 4.5.1 Extraction -- 4.5.2 Identification followed by characterization -- 4.6 Mode of action of the bioactive compounds -- 4.6.1 Disruption of cell wall biosynthesis and cell lysis -- 4.6.2 Blocking of biofilm synthesis -- 4.6.3 Cell wall biosynthesis inhibition -- 4.6.4 Prokaryotic DNA replication blockage -- 4.6.5 Energy synthesis inhibition -- 4.6.6 Bacterial toxin inhibition -- 4.6.7 Inhibition of bacterial resistance against antibiotics -- 4.6.8 ROS generation -- 4.7 Conclusion -- References -- 5 Endophyte-induced bioremediation of toxic metals/metalloids -- 5.1 Introduction -- 5.2 Endophytes -- 5.2.1 Role of endophytes to improve phytoremediation -- 5.2.2 Endophyte-assisted phytoremediation of toxic metals and metalloids -- 5.2.3 Endophytic bacteria role in remediation of toxic metals and metalloids -- 5.2.4 Endophytic fungi role in remediation of toxic metal and metalloids -- 5.3 Endophyte-assisted phytoremediation in mixed pollutant scenarios -- 5.4 Plant growth promoting endophytic bacteria-assisted phytoremediation -- 5.4.1 Mechanism of plant growth promotion -- 5.4.2 Mechanism of altering plant metal uptake -- Conclusion and future perspectives -- References -- 6 Biological control of plant diseases by endophytes -- 6.1 Introduction -- 6.1.1 Recent approaches used to control plant diseases in agriculture. , 6.1.2 Biocontrol as an environmentally sound approach for plant disease control -- 6.2 Endophytes -- 6.2.1 Biocontrol mechanism of endophytes-mediated disease control -- 6.2.2 Current position of endophytes as biocontrol agents -- Conclusion -- Acknowledgments -- Conflict of interest statement -- References -- 7 Endophytes and their bioactive metabolite's role against various MDR microbes causing diseases in humans -- 7.1 Introduction -- 7.2 Endophytes: what are they? -- 7.3 Types of endophytes -- 7.4 Isolation and identification of endophytes from different sources -- 7.4.1 How to isolate endophytes? -- 7.5 Mode of entry of endophytic bacteria in the plant -- 7.6 Endophytes and their bioactive compounds -- 7.6.1 Synthesis of bioactive compounds by endophytic microbes -- 7.6.2 Secondary metabolites -- 7.6.3 Synthesis of secondary metabolites -- 7.7 Endophytic bacteria-mediated secondary metabolite formation -- 7.8 Microbial endophytes: drug source against various diseases -- 7.9 Endophytes and their biosynthetic potential -- 7.10 Future prospective -- 7.11 Conclusion -- References -- 8 Endophytic bacteria for drug discovery and bioremediation of heavy metals -- 8.1 Introduction -- 8.2 Mode of entry and establishment of symbiotic relationship with plant-endophytic bacteria -- 8.3 Bioactive compounds isolated from endophytes -- 8.3.1 Secondary metabolites -- 8.3.2 Anticancer compounds -- 8.3.3 Antimicrobial compounds -- 8.3.4 Antibiotics from endophytes -- 8.3.5 Antioxidant compounds from endophytes -- 8.3.6 Products of endophytes with insecticidal activities -- 8.4 Bioremediation of heavy metals by endophytic bacteria -- 8.5 The role of endophytic microorganisms in bioremediation -- 8.6 Characteristics of pollutant-degrading endophytic bacteria -- 8.7 Plant-endophytic bacteria mutualism for the remediation of contaminated soil. , 8.8 Plant-endophyte mutualism for the remediation of contaminated water -- 8.9 Future prospective and conclusion -- References -- 9 Mechanism of biological control of plant diseases by endophytes -- 9.1 Introduction -- 9.2 Endophytes -- 9.3 Biocontrol-endophytes -- 9.3.1 Bacterial biocontrol-endophytes -- 9.3.2 Fungal endophytes -- 9.4 Mechanisms of biocontrol-endophytes to controlling phytopathogens -- 9.4.1 Siderophore production -- 9.4.2 Lytic enzyme production -- 9.4.3 ACC deaminase production -- 9.4.4 Bioactive metabolites production -- 9.4.5 Induced systematic resistance -- 9.4.6 Molecular approaches to control phytopathogens -- 9.5 Advantages of biocontrol-endophytes -- 9.6 Challenges -- 9.7 Future prospects -- 9.9 Conclusion -- References -- 10 The role of endophytes to boost the plant immunity -- 10.1 Introduction -- 10.2 Origin of symbiosis -- 10.3 Bacterial endophytes -- 10.4 Fungal endophytes -- 10.5 The molecular mechanism behind the host endophytic association -- 10.6 Pathogen-symbiont trade-off -- 10.7 Modulation of plant immune system by endophytes -- 10.8 Endophytes and host's genetic expression -- 10.9 Role of endophytes in plant defense -- 10.10 Concluding remark -- References -- 11 Endophytes based nanoparticles: A novel source of biological activities -- 11.1 Introduction -- 11.1.1 Endophytic microbes (bacteria or fungi) -- 11.1.2 Significance of endophytic fungi -- 11.1.3 Endophytes and nanoparticles -- 11.2 Nanotechnology -- 11.3 Methodology for nanoparticles synthesis through endophytes -- 11.4 Applications of endophyte-mediated NPs -- 11.4.1 Antimicrobial mechanisms of nanometal toxicity -- 11.4.2 Pharmacological applications -- 11.4.3 Antiviral agents -- 11.4.4 Wound healing activity -- Conclusions and future prospects -- References -- 12 Nanoparticles: Characters, applications, and synthesis by endophytes. , 12.1 Introduction to bionanotechnology -- 12.2 Historical perspectives -- 12.3 Synthesis of nanoparticles -- 12.3.1 Chemical and physical methods of nanoparticles synthesis -- 12.3.2 Biological synthesis of nanoparticles -- 12.4 Introduction to endophytes -- 12.4.1 Types of endophytes -- 12.5 Applications of endophytes -- 12.5.1 Therapeutics -- 12.5.2 Plant growth enhancement -- 12.5.3 Bioremediation -- 12.5.4 Phytoremediation -- 12.5.5 Novel products -- 12.6 Methods for the isolation of endophytic micro-organism -- 12.7 Nanoparticles synthesis by endophytic micro-organisms -- 12.7.1 Nanoparticles synthesized by endophytic bacteria -- 12.7.2 Nanoparticles synthesized by endophytic actinomycetes -- 12.7.3 Nanoparticles synthesized by endophytic fungi -- 12.8 Mechanistic insights involved in the microbial synthesis of nanoparticles -- 12.9 Properties of nanoparticles -- 12.9.1 Electronic and optical properties -- 12.9.2 Magnetic properties -- 12.9.3 Mechanical properties -- 12.9.4 Thermal properties -- 12.10 Characterization methods for nanoparticle analysis -- 12.10.1 UV-Vis spectroscopy -- 12.10.2 Dynamic light scattering -- 12.10.3 Atomic force microscopy -- 12.10.4 Transmission electron microscopy -- 12.10.5 Scanning electron microscopy -- 12.10.6 X-ray-based techniques -- 12.10.7 Fourier transform infrared spectroscopy -- 12.11 Applications of nanoparticles -- 12.11.1 Diagnostics -- 12.11.2 Cancer therapy -- 12.11.3 Antimicrobial activity -- 12.11.4 Catalytic activity -- 12.11.5 Antioxidant activity -- 12.11.6 Environmental remediation -- 12.11.7 Agricultural application -- 12.11.8 Drug delivery system -- References -- 13 Endophytes and their secondary metabolites against human pathogenic MDR microbes -- 13.1 Introduction -- 13.2 Untapped bioactive potential of endophytic bacteria -- 13.2.1 Ecomycins -- 13.2.2 Pseudomycins -- 13.2.3 Munumbicins. , 13.2.4 Kakudumycins.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: Fungi-Biotechnology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (561 pages)
    Edition: 1st ed.
    ISBN: 9780128213957
    Language: English
    Note: Front Cover -- Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-Technology: Volume 1: Fungal Diversity of Sustainable Agriculture -- Copyright Page -- Contents -- List of Contributors -- Preface -- 1 Endophytic fungi: A review of survival strategies that influence the biodiversity studies associated with biopotential pr... -- Introduction -- Importance to study the endophytic fungal diversity -- Fungal endophytes from subtropics and tropical regions -- Endophytes will be modern microbial technology to fulfill our societal needs -- Significance on understanding the modern era challenges -- Conclusion -- Acknowledgments -- References -- 2 Evaluation of phylloplane fungal flora and host plants in the Southern Western Ghats -- Scope of the study -- References -- 3 Fungal endophytes from seaweeds and bio-potential applications in agriculture -- Introduction -- Seaweeds -- Endophytic fungi -- Diversity of molecules produced by seaweed endophytic fungi -- Role of endophytic fungi in plant growth -- Seaweed endophytic fungi as phosphate solubilizers -- Seaweed endophytic fungi as potassium solubilizers -- Bioactive compounds -- Future perspectives -- Acknowledgments -- References -- 4 Fungal endophytes: Entry, establishment, diversity, future prospects in agriculture -- Introduction -- What are endophytes? -- How do these endophytes enter and establish inside the plants? -- How diverse these endophytes are? -- How these fungal endophytes can contribute to sustainable agriculture? -- Phosphate solubilization -- Conclusion -- References -- 5 Fungal endophytes, biodiversity and biopotential applications -- Introduction -- History and evolution of endophytic fungi -- Endophytic fungi -- Biodiversity of fungal endophytes in India -- Unique features of marine environment and their relevance to marine fungi -- Classification of endophytes. , Sponge associated fungal endophytes -- Bioactive compounds and their biopotential applications -- Primary and secondary metabolites -- Factors affecting the production of metabolites -- Future prospects -- References -- 6 The role of fungi in abiotic stress tolerance of plants -- Introduction -- Fungal symbiosis -- Types of fungal symbionts -- Role of fungus in various abiotic stress tolerance -- Salinity stress -- Endophytes -- Mycorrhiza -- Drought stress -- Endophyte -- Mycorrhiza -- Heavy metal stress -- Endophyte -- Mycorrhiza -- Temperature (heat and cold stress) -- Endophyte -- Mycorrhiza -- Conclusion -- References -- 7 Phytopathogenic fungi and their biocontrol applications -- Introduction -- Plant pathology -- Definition of plant pathology -- Plant pathologist -- Definition of disease -- The disease triangle -- Factors affecting disease development -- Pathogen factors -- Introduction of new pathogen -- Presence of aggressive strain of the pathogen -- High birth rate of the pathogen -- Low death rate -- Easy and rapid dispersal of the pathogen -- Adaptability of the pathogen -- Host factors -- Susceptibility of the host -- Aggregation and distribution of susceptible hosts -- Introduction of new host(s) -- Introduction of new collateral or alternate hosts -- Environmental factors -- Simple interest diseases -- Compound interest diseases -- The edaphic environment -- Interactions among factors -- Plant pathogens -- Classification of plant disease -- Fungi -- Phenomenon of infection - pre-penetration, penetration and post penetration -- Pre entry (pre-penetration) -- Entry (penetration) -- Colonization (post penetration) -- Pathogenesis - role of enzymes, toxins, growth regulators and polysaccharides -- Enzymes -- Cellulases -- Hemicellulases -- Ligninases -- Toxins as chemical weapons of pathogens -- Tabtoxin -- Phaseolotoxin -- Tentoxin. , Host-specific toxins -- T-toxin -- HC-toxin -- Growth regulators as weapons -- Auxins -- Gibberellins -- Ethylene -- General principles of plant diseases management - importance, general principles: avoidance, exclusion, eradication, protec... -- Biocontrol of plant disease -- Interactions between plants and beneficial microbes -- Biological control and PGPR -- Parasitism and lysis -- Antibiosis -- Competition -- Trichoderma viride -- Bacillus subtilis -- Pseudomonas fluorescens -- Plant products and antiviral principles in plant disease management -- Neem products -- Neem seed Kernel extract (NSKE) -- Neem oil solution -- Neem cake extract -- Neem cake -- Other plant products -- PGPR -- Disease control -- Ways that PGPR promote plant growth -- Anti-viral principle (AVP) -- Biotechnological developments -- Disease management by biotechnological methods -- Genetic engineering -- Vectors for transfer of genes -- DNA construction -- Coat-protein expression in transgenic plants -- Satellite RNA expression in transgenic plants -- MIC RNA expression in transgenic plants -- Use of RFLP markers for cloning resistance genes -- Disease resistance genes mapped using RFLP markers detoxification of pathotoxin -- Activation of plant defense mechanism - phytoalexins -- Defense related genes -- a. Single gene defense mechanism -- Chitinases and glucanases -- b. Multigenic defense mechanism -- Peroxidases -- Activation of defense genes by chemicals -- Cell and tissue culture -- Somaclonal variation -- Disease resistant plants from tissue culture -- Anther culture -- Protoplasmic fusion -- Reference -- 8 Impact of fungal inoculants on sustainable agriculture -- Introduction -- Soil and soil organisms and nutrients -- Use of microbes -- Microbial inoculants -- Fungal inoculants -- Future prospects and limitations -- Conclusion -- References -- Further reading. , 9 Arbuscular mycorrhizal (AM) fungi: Potential role in sustainable agriculture -- Introduction -- Role of AMF for improving agricultural yield and quality -- Role of AMF in biotic stress management -- Viral diseases -- Nematodes -- Role of AMF against abiotic stress management -- Drought stress -- Salinity stress -- Heavy metal stress -- AMF mediated defense mechanisms -- Factors affecting AMF potential -- Commercial potential of AMF -- Future challenges and strategies in AMF mediated disease management -- Conclusion -- Acknowledgement -- References -- 10 Endophytic fungal diversity of selected medicinal plants and their bio-potential applications -- Diversity of fungal endophytes -- The plant -- Tinospora cordifolia (Willd.) Miers ex Hook F & -- Thoms -- Systematic position -- Adhatoda vasica Nees -- Systematic position -- Murraya koenigii (L.) Spreng -- Systematic position -- Endophytes in laboratory culture -- Gateway of fungi in host plant -- Histological studies -- Isolation and identification of endophytic fungi -- Metabolites from endophytic fungi -- Biological roles of fungal endophytes -- Nutrient pedaling and phyto-stimulation -- Anticancer activity -- Antimicrobial properties -- Antidiabetic activity -- Immunosuppressive activity -- Antiviral activity -- Conclusion -- References -- Further reading -- 11 Prospect of biofuel production by fungus -- Introduction -- Bioethanol production -- Status of bioethanol production in the world and in India -- Feedstocks and biomass used for bioethanol production -- Fungus as microorganism for pretreatment of lignocellulosic substrates for bioethanol production -- Bioreactors for bioethanol production by fungus -- Biodiesel production -- Status of biodiesel production in the world and in India -- Feedstocks and biomass used for biodiesel production -- Fungus as microorganism for oil production. , Production of biodiesel from fungal oil after transesterification process -- Nano catalyzed biodiesel production -- Alumina based catalysts -- Silica-based catalysts -- Calcium oxide-based catalysts -- Zirconia based catalysts -- Magnesium oxide-based catalysts -- Titanium dioxide-based catalysts -- Heteropolyacid based catalysts -- Carbon-based catalysts -- Biogas production -- Status of biogas production in the world and in India -- Feedstocks and biomass used for biogas production -- Production of biogas by anaerobic digestion of organic feedstocks by microorganisms -- Fungus as microorganism for anaerobic digestion -- Microbial fuel cell -- Current scenario of MFC's in the world and in India -- Mechanism of electricity production in MFC -- Mechanisms of electron transfer in MFC -- Direct electron transfer -- Indirect electron transfer (exogenous or endogenous) -- Why fungus is superior to bacteria or algae? -- Fungus as anode and cathode -- Fungi/yeasts as biocatalyst in cathode -- Fungi/yeasts as biocatalyst in anode -- Applications of MFC -- Production of bio electricity -- Biohydrogen production -- Waste water treatment containing organic matter and heavy metals -- Carbon sequestration -- Biosensor -- Conclusions -- Acknowledgement -- References -- 12 Fungal endophytes and their applications as growth promoters and biological control agents -- Introduction -- Plant-endophyte interaction -- Fungal endophytes and their plant host -- Importance/functional significance of fungal endophytes -- Role of fungal endophytes in plant growth promotion -- Mode of action for growth promotion -- Fungal endophytes as biocontrol agents -- Mechanism for biocontrol activities -- Synthesis of bioactive compounds -- Conclusion -- References -- 13 Rhizosphere fungi and their plant association: Current and future prospects -- Introduction. , Plant-microbe communication.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Refuse and refuse disposal. ; Environment. ; Water. ; Hydrology. ; Environmental engineering. ; Biotechnology. ; Bioremediation. ; Environmental chemistry.
    Description / Table of Contents: Characterization methods for microbial communities present in contaminated soils -- Antibiotic Resistance Genes as contaminants in Industrial Waste Water Treatment -- Bacteriophages: A strategy to combat antibiotic resistance in waste water treatment plants -- The emergence of Waste Water Treatment Plant as a leading source for dissemination of Antibiotic-Resistant Gene -- Increasing Prevalence of Antibiotic-resistant genes in industrial wastewater: impact on public health -- Antibiotic resistance genes as emerging contaminants in industrial waste water treatment -- Characterization and Dynamic Shift of Microbial Communities in wastewater treatment plant.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VII, 158 p. 17 illus., 12 illus. in color.)
    Edition: 1st ed. 2023.
    ISBN: 9783031446184
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...