GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2024-02-07
    Description: The surface mixed layer of the world ocean regulates global climate by controlling heat and carbon exchange between the atmosphere and the oceanic interior1,2,3. The mixed layer also shapes marine ecosystems by hosting most of the ocean’s primary production4 and providing the conduit for oxygenation of deep oceanic layers. Despite these important climatic and life-supporting roles, possible changes in the mixed layer during an era of global climate change remain uncertain. Here we use oceanographic observations to show that from 1970 to 2018 the density contrast across the base of the mixed layer increased and that the mixed layer itself became deeper. Using a physically based definition of upper-ocean stability that follows different dynamical regimes across the global ocean, we find that the summertime density contrast increased by 8.9 ± 2.7 per cent per decade (10−6–10−5 per second squared per decade, depending on region), more than six times greater than previous estimates. Whereas prior work has suggested that a thinner mixed layer should accompany a more stratified upper ocean5,6,7, we find instead that the summertime mixed layer deepened by 2.9 ± 0.5 per cent per decade, or several metres per decade (typically 5–10 metres per decade, depending on region). A detailed mechanistic interpretation is challenging, but the concurrent stratification and deepening of the mixed layer are related to an increase in stability associated with surface warming and high-latitude surface freshening8,9, accompanied by a wind-driven intensification of upper-ocean turbulence10,11. Our findings are based on a complex dataset with incomplete coverage of a vast area. Although our results are robust within a wide range of sensitivity analyses, important uncertainties remain, such as those related to sparse coverage in the early years of the 1970–2018 period. Nonetheless, our work calls for reconsideration of the drivers of ongoing shifts in marine primary production, and reveals stark changes in the world’s upper ocean over the past five decades.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The Antarctic Slope Front (ASF) is a fundamental feature of the subpolar Southern Ocean that is still poorly observed. In this study we build a statistical climatology of the temperature and salinity fields of the upper 380 m of the Antarctic margin. We use a comprehensive compilation of observational datasets including the profiles gathered by instrumented marine mammals. The mapping method consists first of a decomposition in vertical modes of the combined temperature and salinity profiles. Then the resulting principal components are optimally interpolated on a regular grid and the monthly climatological profiles are reconstructed, providing a physically plausible representation of the ocean. The ASF is located with a contour method and a gradient method applied on the temperature field, two complementary approaches that provide a complete view of the ASF structure. The front extends from the Amundsen Sea to the eastern Weddell Sea and closely tracks the continental shelf break. It is associated with a sharp temperature gradient that is stronger in winter and weaker in summer. The emergence of the front in the Amundsen and Bellingshausen sectors appears to be seasonally variable (slightly more westward in winter than in summer). Investigation of the density gradients across the shelf break indicates a winter slowdown of the baroclinic component of the Antarctic Slope Current at the near surface, in contrast with the seasonal variability of the temperature gradient.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...