GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-18
    Description: A precise GNSS (Global Navigation Satellite System) localization is vital for autonomous road vehicles, especially in cluttered or urban environments where satellites are occluded, preventing accurate positioning. We propose to fuse GPS (Global Positioning System) data with fisheye stereovision to face this problem independently to additional data, possibly outdated, unavailable, and needing correlation with reality. Our stereoscope is sky-facing with 360° × 180° fisheye cameras to observe surrounding obstacles. We propose a 3D modelling and plane extraction through following steps: stereoscope self-calibration for decalibration robustness, stereo matching considering neighbours epipolar curves to compute 3D, and robust plane fitting based on generated cartography and Hough transform. We use these 3D data with GPS raw data to estimate NLOS (Non Line Of Sight) reflected signals pseudorange delay. We exploit extracted planes to build a visibility mask for NLOS detection. A simplified 3D canyon model allows to compute reflections pseudorange delays. In the end, GPS positioning is computed considering corrected pseudoranges. With experimentations on real fixed scenes, we show generated 3D models reaching metric accuracy and improvement of horizontal GPS positioning accuracy by more than 50%. The proposed procedure is effective, and the proposed NLOS detection outperforms CN0-based methods (Carrier-to-receiver Noise density).
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-06
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-27
    Description: The Arctic sea-ice-scape is rapidly transforming. Increasing light penetration will initiate earlier seasonal primary production. This earlier growing season may be accompanied by an increase in ice algae and phytoplankton biomass, augmenting the emission of dimethylsulfide and capture of carbon dioxide. Secondary production may also increase on the shelves, although the loss of sea ice exacerbates the demise of sea-ice fauna, endemic fish and megafauna. Sea-ice loss may also deliver more methane to the atmosphere, but warmer ice may release fewer halogens, resulting in fewer ozone depletion events. The net changes in carbon drawdown are still highly uncertain. Despite large uncertainties in these assessments, we expect disruptive changes that warrant intensified long-term observations and modelling efforts.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-06-23
    Description: Given rapid sea ice changes in the Arctic Ocean in the context of climate warming, better constraints on the role of sea ice in CO2 cycling are needed to assess the capacity of polar oceans to buffer the rise of atmospheric CO2 concentration. Air-ice CO2 fluxes were measured continuously using automated chambers from the initial freezing of a sea ice cover until its decay during the INTERICE V experiment at the Hamburg Ship Model Basin. Cooling seawater prior to sea ice formation acted as a sink for atmospheric CO2, but as soon as the first ice crystals started to form, sea ice turned to a source of CO2, which lasted throughout the whole ice growth phase. Once ice decay was initiated by warming the atmosphere, the sea ice shifted back again to a sink of CO2. Direct measurements of outward ice-atmosphere CO2 fluxes were consistent with the depletion of dissolved inorganic carbon in the upper half of sea ice. Combining measured air-ice CO2 fluxes with the partial pressure of CO2 in sea ice, we determined strongly different gas transfer coefficients of CO2 at the air-ice interface between the growth and the decay phases (from 2.5 to 0.4 mol m−2 d−1 atm−1). A 1D sea ice carbon cycle model including gas physics and carbon biogeochemistry was used in various configurations in order to interpret the observations. All model simulations correctly predicted the sign of the air-ice flux. By contrast, the amplitude of the flux was much more variable between the different simulations. In none of the simulations was the dissolved gas pathway strong enough to explain the large fluxes during ice growth. This pathway weakness is due to an intrinsic limitation of ice-air fluxes of dissolved CO2 by the slow transport of dissolved inorganic carbon in the ice. The best means we found to explain the high air-ice carbon fluxes during ice growth is an intense yet uncertain gas bubble efflux, requiring sufficient bubble nucleation and upwards rise. We therefore call for further investigation of gas bubble nucleation and transport in sea ice.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-11-20
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-06-22
    Description: A rigorous synthesis of the sea-ice ecosystem and linked ecosystem services highlights that the sea-ice ecosystem supports all 4 ecosystem service categories, that sea-ice ecosystems meet the criteria for ecologically or biologically significant marine areas, that global emissions driving climate change are directly linked to the demise of sea-ice ecosystems and its ecosystem services, and that the sea-ice ecosystem deserves specific attention in the evaluation of marine protected area planning. The synthesis outlines (1) supporting services, provided in form of habitat, including feeding grounds and nurseries for microbes, meiofauna, fish, birds and mammals (particularly the key species Arctic cod, Boreogadus saida, and Antarctic krill, Euphausia superba, which are tightly linked to the sea-ice ecosystem and transfer carbon from sea-ice primary producers to higher trophic level fish, mammal species and humans); (2) provisioning services through harvesting and medicinal and genetic resources; (3) cultural services through Indigenous and local knowledge systems, cultural identity and spirituality, and via cultural activities, tourism and research; (4) (climate) regulating services through light regulation, the production of biogenic aerosols, halogen oxidation and the release or uptake of greenhouse gases, for example, carbon dioxide. The ongoing changes in the polar regions have strong impacts on sea-ice ecosystems and associated ecosystem services. While the response of sea-ice–associated primary production to environmental change is regionally variable, the effect on iceassociated mammals and birds is predominantly negative, subsequently impacting human harvesting and cultural services in both polar regions. Conservation can help protect some species and functions. However, the key mitigation measure that can slow the transition to a strictly seasonal ice cover in the Arctic Ocean, reduce the overall loss of sea-ice habitats from the ocean, and thus preserve the unique ecosystem services provided by sea ice and their contributions to human well-being is a reduction in carbon emissions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Newman, L., Heil, P., Trebilco, R., Katsumata, K., Constable, A., van Wijk, E., Assmann, K., Beja, J., Bricher, P., Colemans, R., Costa, D., Diggs, S., Farneti, R., Fawcett, S., Gille, S. T., Hendry, K. R., Henley, S., Hofmann, E., Maksym, T., MazIoff, M., Meijers, A., Meredith, M. M., Moreau, S., Ozsor, B., Robertson, R., Schloss, I., Schofield, O., Shi, J., Sikes, E., Smith, I. J., Swart, S., Wahlin, A., Williams, G., Williams, M. J. M., Herraiz-Borreguero, L., Kern, S., Liesers, J., Massom, R. A., Melbourne-Thomas, J., Miloslavich, P., & Spreen, G. Delivering sustained, coordinated, and integrated observations of the Southern Ocean for global impact. Frontiers in Marine Science, 6, (2019): 433, doi:10.3389/fmars.2019.00433.
    Description: The Southern Ocean is disproportionately important in its effect on the Earth system, impacting climatic, biogeochemical, and ecological systems, which makes recent observed changes to this system cause for global concern. The enhanced understanding and improvements in predictive skill needed for understanding and projecting future states of the Southern Ocean require sustained observations. Over the last decade, the Southern Ocean Observing System (SOOS) has established networks for enhancing regional coordination and research community groups to advance development of observing system capabilities. These networks support delivery of the SOOS 20-year vision, which is to develop a circumpolar system that ensures time series of key variables, and delivers the greatest impact from data to all key end-users. Although the Southern Ocean remains one of the least-observed ocean regions, enhanced international coordination and advances in autonomous platforms have resulted in progress toward sustained observations of this region. Since 2009, the Southern Ocean community has deployed over 5700 observational platforms south of 40°S. Large-scale, multi-year or sustained, multidisciplinary efforts have been supported and are now delivering observations of essential variables at space and time scales that enable assessment of changes being observed in Southern Ocean systems. The improved observational coverage, however, is predominantly for the open ocean, encompasses the summer, consists of primarily physical oceanographic variables, and covers surface to 2000 m. Significant gaps remain in observations of the ice-impacted ocean, the sea ice, depths 〉2000 m, the air-ocean-ice interface, biogeochemical and biological variables, and for seasons other than summer. Addressing these data gaps in a sustained way requires parallel advances in coordination networks, cyberinfrastructure and data management tools, observational platform and sensor technology, two-way platform interrogation and data-transmission technologies, modeling frameworks, intercalibration experiments, and development of internationally agreed sampling standards and requirements of key variables. This paper presents a community statement on the major scientific and observational progress of the last decade, and importantly, an assessment of key priorities for the coming decade, toward achieving the SOOS vision and delivering essential data to all end-users.
    Description: PH was supported by the Australian Government’s Cooperative Research Centers Program through the Antarctica Climate and Ecosystems Cooperative Research Centre, and the International Space Science Institute’s team grant #406. This work contributes to the Australian Antarctica Science projects 4301 and 4390.
    Keywords: Southern Ocean ; observations ; modeling ; ocean–climate interactions ; ecosystem-based management ; long-term monitoring ; international coordination
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(5), (2019): 2943-2968, doi:10.1029/2019JC015071.
    Description: In the Southern Ocean, polynyas exhibit enhanced rates of primary productivity and represent large seasonal sinks for atmospheric CO2. Three contrasting east Antarctic polynyas were visited in late December to early January 2017: the Dalton, Mertz, and Ninnis polynyas. In the Mertz and Ninnis polynyas, phytoplankton biomass (average of 322 and 354 mg chlorophyll a (Chl a)/m2, respectively) and net community production (5.3 and 4.6 mol C/m2, respectively) were approximately 3 times those measured in the Dalton polynya (average of 122 mg Chl a/m2 and 1.8 mol C/m2). Phytoplankton communities also differed between the polynyas. Diatoms were thriving in the Mertz and Ninnis polynyas but not in the Dalton polynya, where Phaeocystis antarctica dominated. These strong regional differences were explored using physiological, biological, and physical parameters. The most likely drivers of the observed higher productivity in the Mertz and Ninnis were the relatively shallow inflow of iron‐rich modified Circumpolar Deep Water onto the shelf as well as a very large sea ice meltwater contribution. The productivity contrast between the three polynyas could not be explained by (1) the input of glacial meltwater, (2) the presence of Ice Shelf Water, or (3) stratification of the mixed layer. Our results show that physical drivers regulate the productivity of polynyas, suggesting that the response of biological productivity and carbon export to future change will vary among polynyas.
    Description: This work was cofunded by the Australian Antarctic Division research projects AAS 4131 and 4291. This project was also supported by the Australian Government Cooperative Research Centres Programme through the Antarctic Climate & Ecosystems (ACE CRC). S. Moreau and C. Genovese were supported by the Australian Research Council's Special Research Initiative for Antarctic Gateway Partnership (project ID SR140300001). V. Puigcorbé and M. Roca‐Martí are grateful for the support from Pere Masque and Edith Cowan University. M.C. Arroyo was supported by the Dickhut Fellowship, administered by the Virginia Institute of Marine Science. The authors would like to thank the officers and crew of the R/V Aurora Australis for their logistic support, the CSIRO hydrochemists for their analyses of nutrient concentrations, and E. J. Yang for her microscope analysis of phytoplankton species. We also want to thank two anonymous reviewers for their very good comments on this study. The data presented in this paper are available on the Australian Antarctic Division (AAD) Data Centre at https://data.aad.gov.au/aadc/metadata/metadata_by_parameter.cfm.
    Description: 2019-09-28
    Keywords: Polynyas ; Primary productivity ; Phytoplankton biomass ; Ice shelves ; Sea ice ; Iron
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-07-10
    Description: We studied phyto- and protozooplankton community composition based on light microscopy, flow cytometry and photosynthetic pigment data in the Atlantic sector of the Southern Ocean during March 2019 (early austral autumn). Sampling was focused on the area east of the prime meridian in the Kong Håkon VII Hav, including Astrid Ridge, Maud Rise and a south-north transect at 6° E. Phytoplankton community composition throughout the studied area was characterized by oceanic diatoms typical of the iron-deplete High-Nutrient Low-Chlorophyll (HNLC) Southern Ocean. Topography and wind-driven iron supply likely sustained blooms dominated by the centric diatom Chaetoceros dichaeta at Maud Rise and at a station north of the 6° E transect. For the remainder of the 6° E transect diatom composition was similar to the previously mentioned bloom stations but flagellates dominated in abundance suggesting a post-bloom situation and likely top-down control by krill on the bloom-forming diatoms. Among flagellates, species with haptophyte-type pigments were the dominating group. At Astrid Ridge, overall abundances were lower and pennate were more numerous than centric diatoms, but the community composition was nevertheless typical for HNLC areas. The observations described here show that C. dichaeta can form blooms beyond the background biomass level and fuels both carbon export and upper trophic levels also within HNLC areas. This study is the first thorough assessment of phytoplankton communities in this region and can be compared to other seasons in future studies.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-09-01
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...