GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Keywords: Geochemistry. ; Historical geology. ; Earth -- Origin. ; Earth -- Internal structure. ; Baltic Shield. ; Electronic books.
    Description / Table of Contents: This is the third of three volumes that survey the Palaeoproterozoic Eon with a focus on Fennoscandian Shield geology, reviewing early Palaeoproterozoic events coincident with Earth's progressive oxygenation. Includes photos of the FAR-DEEP core collection.
    Type of Medium: Online Resource
    Pages: 1 online resource (520 pages)
    Edition: 1st ed.
    ISBN: 9783642296703
    Series Statement: Frontiers in Earth Sciences Series
    DDC: 551.72
    Language: English
    Note: Intro -- Reading the Archive of Earth's Oxygenation -- Volume 3: Global Events and theFennoscandian Arctic Russia - Drilling Early Earth Project -- Dedication -- Contributors to Three-Volume Treatise Reading the Archive of Earth's Oxygenation, Volume 3: Global Events and the Fennoscandian Arctic Russia: Drilling Early Earth Project -- Reviewers for Three-Volume Treatise: Reading the Archive of Earth's Oxygenation -- Acknowledgements -- Preface to Volume 3 -- Contents to Volume 1 -- Contents to Volume 2 -- Contents to Volume 3 -- Part VII: Earth´s Oxygenation and Associated Global Events: The FAR-DEEP Perspective -- 7.1 The End of Mass-Independent Fractionation of Sulphur Isotopes -- 7.1.1 Introduction -- 7.1.2 Multiple Sulphur Isotope Systematics -- 7.1.3 The Multiple Sulphur Isotope Record of Precambrian Sedimentary Rocks -- 7.1.4 The Termination of Mass-Independently Fractionated Sulphur: Implications for the FAR-DEEP Core Material -- References -- 7.2 Huronian-Age Glaciation -- 7.2.1 Introduction -- 7.2.2 Palaeoproterozoic Glacial Deposits of North America -- Ramsay Lake Formation -- Bruce Formation -- Gowganda Formation -- Lower Gowganda Member -- Upper Gowganda Member -- Summary of Huronian Supergroup -- Other Occurrences of Palaeoproterozoic Glaciogenic Rocks in North America -- Lake Superior Area -- South Dakota -- SE Wyoming -- Hurwitz Group, Nunavut -- Chibougamau Area, Québec -- Summary of North American Occurrences of Palaeoproterozoic Glaciogenic Rocks -- 7.2.3 Palaeoproterozoic Glacial Deposits of South Africa -- Griqualand West Basin -- Transvaal Basin -- Diamictite Correlation and Implication for Their Depositional Environments -- 7.2.4 Palaeoproterozoic Glacial Deposits of Australia -- 7.2.5 Palaeoproterozoic Glacial Deposits of Fennoscandia -- The Urkkavaara Formation -- 7.2.6 Palaeoproterozoic Snowball Earth?. , Improving the Chronology of Huronian Glaciation -- What Caused Huronian Glaciation? -- 7.2.7 Implications of the FAR-DEEP Core 3A -- References -- 7.3 The Palaeoproterozoic Perturbation of the Global Carbon Cycle: The Lomagundi-Jatuli Isotopic Event: -- 7.3.1 The Global Carbon Cycle and Its Principal Reservoirs and Fluxes -- 7.3.2 Historical Overview -- 7.3.3 Review of Available Radiometric Ages Constraining the Lomagundi-Jatuli Positive Isotopic Excursion of Carbonate Carbon -- Initiation of the Lomagundi-Jatuli Event -- Termination of the Lomagundi-Jatuli Event -- Global Timing of the Lomagundi-Jatuli Event -- 7.3.4 Lomagundi-Jatuli Excursion as Seen from the Fennoscandian Shield Record -- The Pechenga Greenstone Belt -- Summary -- The Imandra/Varzuga Greenstone Belt -- Summary -- The Onega Basin -- Summary -- The Kalix Greenstone Belt -- Summary -- Other Fennoscandian Examples -- Summary -- delta13C Distribution Patterns of the Lomagundi-Jatuli Age Sedimentary Carbonates in the Fennoscandian Shield -- 7.3.5 The Lomagundi-Jatuli Isotopic Excursion: Unresolved Problems and Implications of FAR-DEEP Core for Future Work -- References -- 7.4 An Apparent Oxidation of the Upper Mantle versus Regional Deep Oxidation of Terrestrial Surfaces in the Fennoscandian Shield -- 7.4.1 Introduction -- Why the Fennoscandian Shield? -- The ``Great Oxidation Event´´ -- Hypotheses for the ``Great Oxidation Event´´ -- Increase in O2 Production -- Decrease in O2 Sinks -- Brief Overview of Mantle Redox and Its Evolution -- Gradual Oxidation of the Mantle -- Unchanged Mantle Redox State -- 7.4.2 Kuetsjärvi Volcanic Formation -- Field Descriptions -- The Geochemistry of Iron in Kuetsjärvi Volcanic Rocks -- Oxidised Surface and Groundwater -- Implications for FAR-DEEP Research -- Magmatic Palaeoredox Proxies -- Palaeosols. , Alteration by Groundwater and Hydrothermal Fluids -- Summary -- References -- 7.5 Abundant Marine Calcium Sulphates: Radical Change of Seawater Sulphate Reservoir and Sulphur Cycle: -- 7.5.1 Introduction -- 7.5.2 The Global Sulphur Cycle During Phanerozoic Time -- 7.5.3 Isotopic Evidence for Precambrian Oceanic Sulphate Abundance -- 7.5.4 Multiple Sulphur Isotope Evidence for the Early Palaeoproterozoic Rise in Oceanic Sulphate Abundance -- 7.5.5 Physical Evidence for Abundant Oceanic Sulphate in the Palaeoproterozoic -- 7.5.6 A Radical Change of the Seawater Sulphate Reservoir: Implication of the FAR-DEEP Core -- References -- 7.6 Enhanced Accumulation of Organic Matter: The Shunga Event: -- 7.6.1 Introduction -- 7.6.2 World-Wide Record of Palaeoproterozoic Carbonaceous Sediments Representing the Shunga Event with Emphasis on the Fennosc... -- 7.6.3 The Shunga Event: A Tale of Productivity and Preservation of Organic Matter in the Early Palaeoproterozoic Ocean -- The Nature of Primary Productivity in the Early Palaeoproterozoic Ocean -- 7.6.4 Giant Palaeoproterozoic Petrified Oil Field in the Onega Basin -- Source Rocks -- Estimated Oil Reserve -- Evidence for Oil Generation and Its Timing -- Time Constraint on Oil Generation -- Oil Migration Pathways -- Oil Traps -- Organosiliceous Rocks or Maksovite -- The Type Locality Maksovo -- FAR-DEEP Hole 12B -- Formation of Maksovite/Organosiliceous Rocks: A Seafloor Hydrocarbon Expulsion? -- Clastic Pyrobitumen and Surface Oil Seeps -- 7.6.5 Possible Driving Forces for the Onset of the Shunga Event and Implication of FAR-DEEP Core for the Shunga Event -- References -- 7.7 The Earliest Phosphorites: Radical Change in the Phosphorus Cycle During the Palaeoproterozoic: -- 7.7.1 Introduction to the Phosphorus Cycle -- 7.7.2 Formation of Phosphorites: Phosphogenesis -- 7.7.3 Palaeoproterozoic Phosphorites. , C. 2000Ma Lower Aravalli Group, Rajasthan, India -- Phosphorites of the Palaeoproterozoic Fennoscandian Shield -- Il´mozero Sedimentary Formation, Imandra/Varzuga Greenstone Belt, Kola Peninsula, Russia -- Pilgujärvi Sedimentary Formation, Pechenga Greenstone Belt, Kola Peninsula, Russia -- Zaonega Formation, Onega Palaeobasin, Karelia, Russia -- 7.7.4 Significance of Phosphorites in the Geologic Record and Implications of the FAR DEEP Material -- References -- 7.8 Traces of Life: -- 7.8.1 Introductory Remarks -- 7.8.2 Palaeoproterozoic Stromatolites from the Lomagundi-Jatuli Interval of the Fennoscandian Shield -- Introduction -- What Is a Stromatolite? -- Stromatolite Biogenicity Criteria -- Mechanisms of Stromatolite Accretion -- Trapping and Binding -- Abiotic Chemical Precipitation -- Biologically Induced Precipitation with a Focus on Chemo- and Phototactic Growth -- Brief Review of Transition from Neoarchaean to Proterozoic Stromatolites: Temporal Context for Palaeoproterozoic Examples from... -- Overview of Stromatolites from the Fennoscandian Shield -- A c. 2100Ma Shallow-Water Onega Carbonate Platform -- the Tulomozero Formation -- Tulomozero Formation Morphotype 1: Spaced Bioherms of Branched, Columnar Stromatolites -- Tulomozero Formation Morphotype 2: Laterally Continuous Biostromes of Branched, Columnar Stromatolites -- Tulomozero Formation Morphotype 3: Flat-Laminated Stromatolites -- Tulomozero Formation Morphotype 4: Columnar Branched Mini-Stromatolites -- Tulomozero Formation Morphotype 5: Non-branching Mini-Columnar Stromatolites -- Tulomozero Formation Morphotype 6: Large Non-branching Columnar Stromatolites -- Tulomozero Formation Morphotype 7: Domed Bioherms Comprising Coalesced Bulbous Stromatolites -- Tulomozero Formation Morphotype 8: Hemispherical Stromatolites -- A c. 2060Ma Rift-Bound Lake System. , the Kuetsjärvi Sedimentary Formation -- Kuetsjärvi Sedimentary Formation Morphotype 1: Stratiform Laminites (Non-columnar Stromatolite) -- Kuetsjärvi Sedimentary Formation Morphotype 2: Club-Like and Subspherical Stromatolite -- Exotic Structures of Argued Microbial Origin -- A c. 2100-2000Ma Rimmed Carbonate Shelf -- the Kalix Greenstone Belt -- Kalix Greenstone Belt Morphotype 1: Parallel-Branching Columnar Stromatolite -- Kalix Greenstone Belt Morphotype 2: Stratiform Laminites -- Kalix Greenstone Belt Morphotype 3: Microcolumnar and Microdigitate Stromatolite -- Kalix Greenstone Belt Morphotype 4: Microspherical Stromatolite -- Kalix Greenstone Belt Morphotype 5: Subspherical to Pillow-Shaped Stromatolite -- Kalix Greenstone Belt Morphotype 6: Hat-Shaped Stromatolite -- Kalix Greenstone Belt Morphotype 7: ``Oversized´´ Spheroidal Stromatolite -- Kalix Greenstone Belt Morphotype 8: Branching and Coalescing Spheroidal Stromatolite -- Kalix Greenstone Belt Morphotype 9: Semispheroidal to Semicolumnar Stromatolite -- Kalix Greenstone Belt Morphotype 10: Solitary Domal and Spheroidal Stromatolites -- On the Biogenicity and Accretion Mechanism of the Fennoscandian Stromatolites -- Significance of Stromatolites from the Lomagundi-Jatuli Interval of Fennoscandia -- Comparison of Stromatolites from Different Depositional Settings -- Stromatolite Biostratigraphy Across the Lomagundi-Jatuli Interval -- Concluding Remarks and Implications for the FAR-DEEP Core -- References -- 7.8.3 Palaeoproterozoic Microfossils -- The Palaeoproterozoic Microfossil Record -- Methods and Problems of Identification of Biogenicity, Endogenicity and Syngenicity -- Introduction -- Raman Spectroscopy -- Transmission Electron Microscopy (TEM) and Analytical TEM (ATEM) -- Secondary Ion Mass Spectrometry (SIMS) -- Synchrotron-Based Techniques (STXM, NEXAFS). , Implication of the FAR-DEEP Cores.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Geology, Stratigraphic -- Paleozoic -- Soviet Union. ; Electronic books.
    Description / Table of Contents: This is the second of three volumes that survey the Palaeoproterozoic Eon with a focus on Fennoscandian Shield geology, reviewing early Palaeoproterozoic events coincident with Earth's progressive oxygenation. Includes photos of the FAR-DEEP core collection.
    Type of Medium: Online Resource
    Pages: 1 online resource (574 pages)
    Edition: 1st ed.
    ISBN: 9783642296598
    Series Statement: Frontiers in Earth Sciences Series
    DDC: 551.72
    Language: English
    Note: Intro -- Reading the Archive of Earth's Oxygenation -- Volume 2: The Core Archive of the Fennoscandian Arctic Russia - Drilling Early Earth Project -- Dedication -- Contributors to Three-Volume Treatise "Reading the Archive of Earth's Oxygenation", Volume 2: "The Core Archive of the Fennoscandian Arctic Russia: Drilling Early Earth Project" -- Reviewers for Three-Volume Treatise: Reading the Archive of Earth's Oxygenation -- Acknowledgements -- Preface to Volume 2 -- Contents to Volume 1 -- Contents to Volume 2 -- Contents to Volume 3 -- Part V: FAR-DEEP Core Archive and Database -- 5.1 FAR-DEEP Core Archive and Database -- 5.1.1 Drilling Information System and Core Archive -- 5.1.2 FAR-DEEP Samples -- 5.1.3 FAR-DEEP Archive Samples, Dataset and Analytical Methods -- 5.1.3.1 Magnetic Susceptibility Measurements -- 5.1.3.2 Acid-Soluble Major and Trace Element Analysis of Carbonates by ICP-AES -- 5.1.3.3 Major and Trace Element Analysis by XRF -- 5.1.3.4 Carbon and Sulphur Analysis by CS Elemental Analyser -- 5.1.3.5 Carbon and Oxygen Isotope Analyses of Carbonates -- 5.1.3.6 Carbon Isotope Analysis of Organic Carbon -- 5.1.4 FAR-DEEP Information on the Web -- References -- Part VI: FAR-DEEP Core Descriptions and Rock Atlas -- 6.1 The Imandra/Varzuga Greenstone Belt -- 6.1. The Imandra/Varzuga Greenstone Belt -- References -- 6.1.1 Seidorechka Sedimentary Formation: FAR-DEEP Hole 1A and Neighbouring Quarries -- The Kuksha Volcanic Formation -- The Seidorechka Sedimentary Formation -- The Sandstone-Siltstone Member -- The Dolostone Member -- The Quartzite Member -- The Limestone-Shale Member -- The Shale Member -- The Seidorechka Volcanic Formation -- The Depositional Framework -- References -- 6.1.2 Polisarka Sedimentary Formation: FAR-DEEP Hole 3A -- The Seidorechka Volcanic Formation -- The Polisarka Sedimentary Formation -- Limestone Member. , The Greywacke-Diamictite Member -- Igneous Bodies Within the Sedimentary Succession -- The Polisarka Volcanic Formation -- Depositional Framework -- References -- 6.1.3 Umba Sedimentary Formation: FAR-DEEP Hole 4A -- The Umba Sedimentary Formation -- The Sandstone-Siltstone Member -- The Dolostone Member -- The Shale Member -- The Quartzite Member -- Volcanic Units Within the Sedimentary Succession -- The Umba Volcanic Formation -- The Depositional Framework -- References -- 6.1.4. Umba Sedimentary Formation, Sukhoj Section -- Section Description -- Depositional Framework -- References -- 6.2 The Pechenga Greenstone Belt -- 6.2 The Pechenga Greenstone Belt -- References -- 6.2.1 The Neverskrukk Formation: Drillholes 3462, 3463 and Related Outcrops -- The Neverskrukk Formation, Drillhole 3462 -- Conglomerate Unit -- Gritstone Unit -- Gritstone-Conglomerate-Sandstone Unit -- Sandstone Unit -- Conglomerate-Sandstone Unit -- The Neverskrukk Formation, Drillhole 3463 -- The Depositional Framework -- References -- 6.2.2 Kuetsjärvi Sedimentary Formation: FAR-DEEP Hole 5A, Neighbouring Quarry and Related Outcrops -- The Ahmalahti Volcanic Formation (Unit A) -- The Kuetsjärvi Sedimentary Formation -- The Arkosic Member -- The Lower Dolostone Member -- The Quartzite Member -- The Upper Dolostone Member -- Igneous Bodies Within the Sedimentary Succession: Ferropicrite (Unit B) -- The Kuetsjärvi Volcanic Formation (Unit C) -- Depositional Framework -- References -- 6.2.3 Kuetsjärvi Volcanic Formation: FAR-DEEP Hole 6A and Related Outcrops -- Andesite-Rhyolite Member -- Unit A -- Unit B -- Unit C -- Unit D -- Unit E -- Unit F -- Unit G -- Conglomerate Member -- Basalt Member -- Unit H -- Depositional Framework -- References -- 6.2.4 Kolosjoki Sedimentary and Kuetsjärvi Volcanic Formations: FAR-DEEP Hole 7A -- The Kuetsjärvi Volcanic Formation. , The Kolosjoki Sedimentary Formation -- The Lower Greywacke Member -- The Gritstone Member -- The Depositional Framework -- References -- 6.2.5 Kolosjoki Sedimentary Formation: FAR-DEEP Holes 8A and 8B and Related Outcrops -- The Kuetsjärvi Volcanic Formation -- The Kolosjoki Sedimentary Formation -- The Sandstone Member -- The Lower Greywacke Member -- The Gritstone Member -- The Haematite Member -- The Ferropicrite Member -- The Dolostone Member -- The Upper Greywacke Member -- The Depositional Framework -- References -- 6.2.6 Kolosjoki Volcanic Formation: FAR-DEEP Hole 9A -- Volcanic Rocks -- Sedimentary Rocks -- Depositional Setting -- References -- 6.3 The Onega Basin -- 6.3. The Onega Basin -- References -- 6.3.1 Tulomozero Formation: FAR-DEEP Holes 10A and 10B -- Hole 10A -- Member 1 (Lower Dolostone) -- Member 2 (Siltstone-Sandstone-Breccia) -- Member 3 (Dolostone-Dolomarl) -- Member 4 (Dolomarl) -- Member 5 (Siltstone-Dissolution Breccia-Magnesite) -- Member 6 (Dolomarl-Dolostone-Siltstone-Sandstone) -- Member 7 (Sandstone-Dolostone) -- Member 8 (Siltstone-Sandstone) -- Member 9 (Dolostone-Sandstone-Dolomarl) -- Hole 10B -- Member 10 (Dolostone-Conglomerate) -- Member 11 (Sandstone-Basalt) -- Member 12 (Siltstone) -- Member 13 (Upper Dolostone) -- Member 14 (Nodular Shale-Siltstone-Marl-Breccia) -- Member 15 (Shale-Dissolution Breccia) -- Depositional Settings Based on Core 10A and 10B Logs -- References -- 6.3.2 Tulomozero Formation: FAR-DEEP Hole 11A -- The Tulomozero Formation -- Member 1 (Dolostone-Siltstone-Shale) -- Member 2 (Sandstone-Siltstone-Shale-Dissolution Breccia) -- Member 3 (Lower Dolostone) -- Member 4 (Siltstone-Shale-Basalt) -- Member 5 (Dolostone-Dissolution Breccia) -- Member 6 (Conglomerate) -- Member 7 (Upper Dolostone) -- The Zaonega Formation -- Member 1 (Sandstone-Siltstone-Dolomarl) -- Member 2 (Siltstone). , Depositional Settings -- References -- 6.3.3 Zaonega Formation: FAR-DEEP Holes 12A and 12B, and Neighbouring Quarries -- The Zaonega Formation -- The Greywacke Member -- The Dolostone-Greywacke Member -- The Mudstone-Limestone Member -- The Dolostone-Chert Member -- Magmatic Units -- Depositional Environment and Postdepositional Alteration -- References -- 6.3.4 Zaonega Formation: FAR-DEEP Hole 13A -- The Zaonega Formation -- The Siliciclastic-Carbonate Member -- The Dolostone-Chert Member -- Magmatic Units -- Correlation of Holes 12AB and 13A -- Depositional Environment and Postdepositional Alterations -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Geology, Stratigraphic -- Paleozoic -- Baltic Shield. ; Electronic books.
    Description / Table of Contents: This is the first of three volumes that survey the Palaeoproterozoic Eon with a focus on Fennoscandian Shield geology, reviewing early Palaeoproterozoic events coincident with Earth's progressive oxygenation. Includes photos of the FAR-DEEP core collection.
    Type of Medium: Online Resource
    Pages: 1 online resource (502 pages)
    Edition: 1st ed.
    ISBN: 9783642296826
    Series Statement: Frontiers in Earth Sciences Series
    DDC: 551.72
    Language: English
    Note: Intro -- Reading the Archive of Earth's Oxygenation -- Volume 1: The Palaeoproterozoic of Fennoscandia as Context for the Fennoscandian Arctic Russia - Drilling Early Earth Project -- Dedication -- Contributors to Three-Volume Treatise Readingthe Archive of Earth's Oxygenation,Volume 1: The Palaeoproterozoic of Fennoscandiaas Context for the FennoscandianArctic Russia - Drilling Early Earth Project -- Reviewers for Three-Volume Treatise:Reading the Archive of Earth's Oxygenation -- Acknowledgements -- Preface to Volume 1 -- Contents to Volume 1 -- Contents to Volume 2 -- Contents to Volume 3 -- Part I: Palaeoproterozoic Earth -- 1.1 Tectonic Evolution and Major Global Earth-Surface Palaeoenvironmental Events in the Palaeoproterozoic -- 1.1.1 Late Archaean Tectonic Restructuring -- Palaeogeography -- 1.1.2 Newly Born Supercontinent(s) Through 2.4-c. 2.3Ga Time Interval -- Global Magmatic Shut- or Slow-Down -- Global Glaciation and Oxygenation of Atmosphere -- 1.1.3 Rifted Supercontinent(s) Through c. 2.3-2.1Ga -- Formation of Giant Manganese Deposits and World-Wide ``Red Beds´´ -- One of the Greatest Perturbations of the Global Carbon Cycle: The Lomagundi-Jatuli Isotopic Event -- Upper Mantle Oxidising Event -- Radical Change of Seawater Sulphate Reservoir -- 1.1.4 Dispersed Kenorland Supercontinent Through 2.1-1.9Ga -- Enhanced Gglobal Accumulation of Organic Matter: The Shunga Event, and Giant Iron-Ore Deposits -- The Earliest Phosphorites: A Radical Change in the Phosphorous Cycle -- Establishment of an Aerobic Pathway in Recycling of Organic Matter -- 1.1.5 Summary -- References -- Part II: The Fennoscandian Arctic Russia: Drilling Early Earth Project (FAR-DEEP) -- 2.1 The International Continental Scientific Drilling Program -- 2.1.2 Fennoscandian Arctic Russia-Drilling Early Earth Project (FAR-DEEP). , Motivation and Goals of Drilling Project -- Scientific Background for Implementation of the Drilling Project -- Implementation of the Scientific Drilling Project -- References -- Part III: Fennoscandia: The First 500 Million Years of the Palaeoproterozoic -- 3.1 The Early Palaeoproterozoic of Fennoscandia: Geological and Tectonic Settings -- References -- 3.2 Litho- and Chronostratigraphy of the Palaeoproterozoic Karelian Formations -- 3.2.1 Lithostratigraphic Framework -- 3.2.2 Event Stratigraphy and Age Constraints -- 3.2.3 The Sumian System, 2505-2430Ma -- 3.2.4 The Sariolian System, 2430-2300Ma -- 3.2.5 The Jatulian System, 2300-2060Ma -- 3.2.6 The Ludicovian System, 2060-1960Ma -- 3.2.7 The Kalevian System, 1960-1900Ma -- 3.2.8 Post-Karelian, Postorogenic Supracrustal Rocks -- 3.2.9 Global Implications of the Event-Based Fennoscandian Chronostratigraphy -- References -- 3.3 Palaeotectonic and Palaeogeographic Evolution of Fennoscandia in the Early Palaeoproterozoic -- 3.3.1 Pre-Sumian Time -- 3.3.2 2505-2430Ma Period -- 3.3.3 2430-2300Ma Period -- 3.3.4 2300-2060Ma Period -- 3.3.5 2060-1950Ma Period -- 3.3.6 1950-1900Ma Period -- 3.3.7 1900-1850Ma Period -- 3.3.8 Summary -- References -- 3.4 Evolution of the Palaeoproterozoic (2.50-1.95Ga) Non-orogenic Magmatism in the Eastern Part of the Fennoscandian Shield -- 3.4.1 Introduction -- 3.4.2 Sumian Magmatism -- 3.4.3 Sariolian Magmatism -- 3.4.4 Jatulian Magmatism -- 3.4.5 Ludicovian Magmatism -- 3.4.6 Kalevian Magmatism -- 3.4.7 Post-Ludicovian Allochthonous Units -- 3.4.8 Orogenic Magmatism in the Kola Peninsula -- 3.4.9 Nd Isotope Evolution -- 3.4.10 Oxidation State of Iron -- 3.4.11 Discussion -- References -- Part IV: Geology of the Drilling Sites -- 4.1 The Imandra/Varzuga Greenstone Belt -- 4.1.1 Introduction -- 4.1.2 General Geological Features -- 4.1.3 Stratigraphic Subdivision and Age. , The Strel´na Group -- The Purnach Formation -- The Kuksha Sedimentary Formation -- The Kuksha Volcanic Formation -- The Seidorechka Sedimentary Formation -- The Seidorechka Volcanic Formation -- The Varzuga Group -- The Polisarka Sedimentary Formation -- The Polisarka Volcanic Formation -- The Umba Sedimentary Formation -- The Umba Volcanic Formation -- The Il´mozero Sedimentary Formation -- The Il´mozero Volcanic Formation -- The Tominga Group -- References -- 4.2 The Pechenga Greenstone Belt -- 4.2.1 Introduction -- 4.2.2 General Geological Features -- 4.2.3 Stratigraphic Subdivision and Age -- The North Pechenga Group -- The Neverskrukk Formation -- The Ahmalahti Formation -- The Kuetsjärvi Sedimentary Formation -- The Kuetsjärvi Volcanic Formation -- The Kolosjoki Sedimentary Formation -- The Kolosjoki Volcanic Formation -- Pilgujärvi Sedimentary Formation -- Pilgujärvi Volcanic Formation -- The South Pechenga Group -- References -- 4.3 The Onega Basin -- 4.3.1 Introduction -- 4.3.2 General Geological Features -- 4.3.3 Stratigraphic Subdivision and Age -- The Sumian Super-Horizon -- The Glubokozero Formation -- The Kumsa Formation -- The Sariolian Super-Horizon -- The Paljeozero Formation -- The Jatulian Super-Horizon -- The Jangozero Formation -- The Medvezhegorsk/Koikary Formation -- The Tulomozero Formation -- The Ludicovian Super-Horizon -- The Zaonega Formation -- The Suisari Formation -- The Kalevian Super-Horizon -- The Kondopoga Formation -- The Vashozero Formation -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 420 (2002), S. 202-202 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Nature 418, 627–630 (2002). On page 628, line 23, of this Letter, the isotope equilibrium fractionation temperature of 500 °C was incorrectly stated as ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 418 (2002), S. 627-630 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The isotopic composition of graphite is commonly used as a biomarker in the oldest (〉3.5 Gyr ago) highly metamorphosed terrestrial rocks. Earlier studies on isotopic characteristics of graphite occurring in rocks of the approximately 3.8-Gyr-old Isua supracrustal belt (ISB) in ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-08
    Description: The Harstad Basin is a structural block on the continental shelf of SW Barents Sea where gas hydrates likely occurred below the grounded ice-sheet during the last glaciation and it hosts active gas seepage at numerous seafloor sites. We present an integrated study of fluid flow systems in the Harstad Basin by combining seismic profile interpretations and gas flare mapping data with the geochemical results obtained on seafloor seeping gas and methane-derived carbonate crusts. More than 190 acoustic gas flares were registered in water column, many of them in association with pockmarks and carbonate crust fields. However, weak or absent seepage observed during remotely operated underwater vehicle transects across many pockmarks and crust fields suggests that seepage activity may have decreased since the last deglaciation. In the western Harstad Basin, seeps of microbial methane occur mainly above Tertiary formations that are pinching out below the glacial sediments. High amplitude seismic anomalies suggest the presence of gas pockets at the base of the glacial sediments and within Tertiary deposits. In contrast, gas seeping in the eastern Harstad Basin originates from a biodegraded thermogenic source tentatively connected to the deeply faulted Mesozoic rocks occurring below glacial sediments. This spatial variability in fluid sources is also recorded in the carbon isotope data of seafloor carbonate crusts, with δ13C values typically between −55 and −42‰ and −40 and −20 ‰VPDB for carbonate crusts associated with microbial and thermogenic fluids, respectively. U-Th chronology combined with the stable isotope data suggests that this discrepancy in fluid sources over a distance of about 20 km has been stable since the last glaciation and highlights the significance of regional underlying geology in mediating fluid supply to the seafloor
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-08
    Description: The Harstad Basin is a structural block on the continental shelf of SW Barents Sea where gas hydrates likely occurred below the grounded ice-sheet during the last glaciation and it hosts active gas seepage at numerous seafloor sites. We present an integrated study of fluid flow systems in the Harstad Basin by combining seismic profile interpretations and gas flare mapping data with the geochemical results obtained on seafloor seeping gas and methane-derived carbonate crusts. More than 190 acoustic gas flares were registered in water column, many of them in association with pockmarks and carbonate crust fields. However, weak or absent seepage observed during remotely operated underwater vehicle transects across many pockmarks and crust fields suggests that seepage activity may have decreased since the last deglaciation. In the western Harstad Basin, seeps of microbial methane occur mainly above Tertiary formations that are pinching out below the glacial sediments. High amplitude seismic anomalies suggest the presence of gas pockets at the base of the glacial sediments and within Tertiary deposits. In contrast, gas seeping in the eastern Harstad Basin originates from a biodegraded thermogenic source tentatively connected to the deeply faulted Mesozoic rocks occurring below glacial sediments. This spatial variability in fluid sources is also recorded in the carbon isotope data of seafloor carbonate crusts, with δ13C values typically between −55 and −42‰ and −40 and −20 ‰VPDB for carbonate crusts associated with microbial and thermogenic fluids, respectively. U-Th chronology combined with the stable isotope data suggests that this discrepancy in fluid sources over a distance of about 20 km has been stable since the last glaciation and highlights the significance of regional underlying geology in mediating fluid supply to the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: This dataset contains molybdenum and uranium concentrations; uranium isotope compositions; pertinent major element concentrations; and total organic carbon contents of black shales from the ~2 Ga upper Zaonega Formation, NW-Russia. The samples originate from the Onega Parametric Borehole (OPH). This data was collected via X-ray fluorescence spectroscopy, multi-collector inductively-coupled plasma mass spectrometry and carbon analysis.
    Keywords: Aluminium oxide; Calcium oxide; Carbon, organic, total; Core; DEPTH, sediment/rock; Drilling/coring; Magnesium oxide; MC-ICP-MS (Thermo Scientific, Neptune); Molybdenum; molybdenum isotopes; Onega_Parametric_Borehole; OPH; Paleoproterozoic; Phosphorus; Russia; Sample code/label; Sample ID; Silicon dioxide; trace metals; Uranium; Uranium isotopes; X-ray fluorescence spectrometry; Zaonega Formation; δ234 Uranium; δ238 Uranium; δ238 Uranium, standard error
    Type: Dataset
    Format: text/tab-separated-values, 1035 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-07-10
    Description: This dataset contains molybdenum, uranium, and rhenium concentrations; molybdenum isotope compositions; pertinent major element concentrations; and total organic carbon contents of black shales from the ~2 Ga upper Zaonega Formation, NW-Russia. The samples originate from drill cores OnZaP 1 and 3. This data was collected using (multi-collector) inductively-coupled plasma mass spectrometry, inductively-coupled plasma optical emission spectrometry, carbon analysis, and loss on ignition.
    Keywords: Aluminium oxide; Calcium oxide; Carbon, organic, total; Depth, composite; DEPTH, sediment/rock; Drilling/coring; Event label; ICP-MS, Thermo Scientific, Element 2; ICP-OES; Magnesium oxide; Molybdenum; molybdenum isotopes; Multi-Collector ICP-MS (MC-ICP-MS); OnZaP-1; OnZaP-3; Paleoproterozoic; Phosphorus; Rhenium; Russia; Sample code/label; Sample ID; Silicon dioxide; trace metals; Uranium; Uranium isotopes; Zaonega Formation; δ98/95Mo; δ98/95Mo, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 2487 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Sauer, Simone; Knies, Jochen; Lepland, Aivo; Chand, S; Eichinger, Florian; Schubert, Carsten J (2015): Hydrocarbon sources of cold seeps off the Vesteralen coast, northern Norway. Chemical Geology, 417, 371-382, https://doi.org/10.1016/j.chemgeo.2015.10.025
    Publication Date: 2023-09-02
    Description: We investigated active methane seeps in a water depth of 200 m in the Hola area off the coast of Vesteralen, northern Norway, to assess (1) hydrocarbon sources, (2) migration pathways and (3) the influence of hydrocarbon seepage on sediment pore water and water column chemistry. The seepage area is characterised by the presence of gas flares in the water column as revealed by hydro acoustic surveys and elevated methane concentrations of up to 42 nM ca. 5 m above the seafloor. Pore water analyses of three gravity cores from the seepage area show varying depths of the sulphate-methane-transition zone (SMTZ) between 80 cm and 〉 250 cm indicating spatially heterogeneous methane ascent. The isotopic composition of methane (d13C from - 40per mil to - 63per mil and d2H from - 191per mil to - 225per mil) and d13C depth profiles of methane and dissolved inorganic carbon show that the hydrocarbons are predominantly of thermogenic origin, consistent with d13C values of C2 to C4 hydrocarbons. Isotope data also indicate considerable biodegradation of propane. Seismic profiles from the study area reveal major faults and steeply dipping unconformities between the basement and overlying Mesozoic sedimentary rocks. We propose that these act as migration pathways for the hydrocarbons from late Jurassic to early Cretaceous source rocks.
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...