GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 12, No. 10 ( 2019-10-01), p. 5217-5230
    Kurzfassung: Abstract. Methane (CH4) emissions from coal production amount to roughly one-third of European anthropogenic CH4 emissions in the atmosphere. Poland is the largest hard coal producer in the European Union with the Polish side of the Upper Silesian Coal Basin (USCB) as the main part of it. Emission estimates for CH4 from the USCB for individual coal mine ventilation shafts range between 0.03 and 20 kt a−1, amounting to a basin total of roughly 440 kt a−1 according to the European Pollutant Release and Transfer Register (E-PRTR, http://prtr.ec.europa.eu/, 2014). We mounted a ground-based, portable, sun-viewing FTS (Fourier transform spectrometer) on a truck for sampling coal mine ventilation plumes by driving cross-sectional stop-and-go patterns at 1 to 3 km from the exhaust shafts. Several of these transects allowed for estimation of CH4 emissions based on the observed enhancements of the column-averaged dry-air mole fractions of methane (XCH4) using a mass balance approach. Our resulting emission estimates range from 6±1 kt a−1 for a single shaft up to 109±33 kt a−1 for a subregion of the USCB, which is in broad agreement with the E-PRTR reports. Three wind lidars were deployed in the larger USCB region providing ancillary information about spatial and temporal variability of wind and turbulence in the atmospheric boundary layer. Sensitivity studies show that, despite drawing from the three wind lidars, the uncertainty of the local wind dominates the uncertainty of the emission estimates, by far exceeding errors related to the XCH4 measurements themselves. Wind-related relative errors on the emission estimates typically amount to 20 %.
    Materialart: Online-Ressource
    ISSN: 1867-8548
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2019
    ZDB Id: 2505596-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 10, No. 1 ( 2017-01-02), p. 1-14
    Kurzfassung: Abstract. Remote sensing of the gaseous composition of non-eruptive, passively degassing volcanic plumes can be a tool to gain insight into volcano interior processes. Here, we report on a field study in September 2015 that demonstrates the feasibility of remotely measuring the volcanic enhancements of carbon dioxide (CO2), hydrogen fluoride (HF), hydrogen chloride (HCl), sulfur dioxide (SO2), and bromine monoxide (BrO) in the downwind plume of Mt. Etna using portable and rugged spectroscopic instrumentation. To this end, we operated the Fourier transform spectrometer EM27/SUN for the shortwave-infrared (SWIR) spectral range together with a co-mounted UV spectrometer on a mobile platform in direct-sun view at 5 to 10 km distance from the summit craters. The 3 days reported here cover several plume traverses and a sunrise measurement. For all days, intra-plume HF, HCl, SO2, and BrO vertical column densities (VCDs) were reliably measured exceeding 5  × 1016, 2  × 1017, 5  × 1017, and 1  × 1014 molec cm−2, with an estimated precision of 2.2  × 1015, 1.3  × 1016, 3.6  × 1016, and 1.3  × 1013 molec cm−2, respectively. Given that CO2, unlike the other measured gases, has a large and well-mixed atmospheric background, derivation of volcanic CO2 VCD enhancements (ΔCO2) required compensating for changes in altitude of the observing platform and for background concentration variability. The first challenge was met by simultaneously measuring the overhead oxygen (O2) columns and assuming covariation of O2 and CO2 with altitude. The atmospheric CO2 background was found by identifying background soundings via the co-emitted volcanic gases. The inferred ΔCO2 occasionally exceeded 2  ×  1019 molec cm−2 with an estimated precision of 3.7  ×  1018 molec cm−2 given typical atmospheric background VCDs of 7 to 8  ×  1021 molec cm−2. While the correlations of ΔCO2 with the other measured volcanic gases confirm the detection of volcanic CO2 enhancements, correlations were found of variable significance (R2 ranging between 0.88 and 0.00). The intra-plume VCD ratios ΔCO2 ∕ SO2, SO2 ∕ HF, SO2 ∕ HCl, and SO2 ∕ BrO were in the range 7.1 to 35.4, 5.02 to 21.2, 1.54 to 3.43, and 2.9  ×  103 to 12.5  ×  103, respectively, showing pronounced day-to-day and intra-day variability.
    Materialart: Online-Ressource
    ISSN: 1867-8548
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2017
    ZDB Id: 2505596-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 11 ( 2021-06-10), p. 8791-8807
    Kurzfassung: Abstract. Abundant mining and industrial activities located in the Upper Silesian Coal Basin (USCB) lead to large emissions of the potent greenhouse gas (GHG) methane (CH4). The strong localization of CH4 emitters (mostly confined to known coal mine ventilation shafts) and the large emissions of 448 and 720 kt CH4 yr−1 reported in the European Pollutant Release and Transfer Register (E-PRTR 2017) and the Emissions Database for Global Atmospheric Research (EDGAR v4.3.2), respectively, make the USCB a prime research target for validating and improving CH4 flux estimation techniques. High-precision observations of this GHG were made downwind of local (e.g., single facilities) to regional-scale (e.g., agglomerations) sources in the context of the CoMet 1.0 campaign in early summer 2018. A quantum cascade–interband cascade laser (QCL–ICL)-based spectrometer adapted for airborne research was deployed aboard the German Aerospace Center (DLR) Cessna 208B to sample the planetary boundary layer (PBL) in situ. Regional CH4 emission estimates for the USCB are derived using a model approach including assimilated wind soundings from three ground-based Doppler lidars. Although retrieving estimates for individual emitters is difficult using only single flights due to sparse data availability, the combination of two flights allows for exploiting different meteorological conditions (analogous to a sparse tomography algorithm) to establish confidence on facility-level estimates. Emission rates from individual sources not only are needed for unambiguous comparisons between bottom-up and top-down inventories but also become indispensable if (independently verifiable) sanctions are to be imposed on individual companies emitting GHGs. An uncertainty analysis is presented for both the regional-scale and facility-level emission estimates. We find instantaneous coal mine emission estimates of 451/423 ± 77/79 kt CH4 yr−1 for the morning/afternoon flight of 6 June 2018. The derived fuel-exploitation emission rates coincide (±6 %) with annual-average inventorial data from E-PRTR 2017 although they are distinctly lower (−28 %/−32 %) than values reported in EDGAR v4.3.2. Discrepancies in available emission inventories could potentially be narrowed down with sufficient observations using the method described herein to bridge the gap between instantaneous emission estimates and yearly averaged inventories.
    Materialart: Online-Ressource
    ISSN: 1680-7324
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2021
    ZDB Id: 2092549-9
    ZDB Id: 2069847-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 9 ( 2022-05-05), p. 5859-5876
    Kurzfassung: Abstract. Given its abundant coal mining activities, the Upper Silesian Coal Basin (USCB) in southern Poland is one of the largest sources of anthropogenic methane (CH4) emissions in Europe. Here, we report on CH4 emission estimates for coal mine ventilation facilities in the USCB. Our estimates are driven by pairwise upwind–downwind observations of the column-average dry-air mole fractions of CH4 (XCH4) by a network of four portable, ground-based, sun-viewing Fourier transform spectrometers of the type EM27/SUN operated during the CoMet campaign in May–June 2018. The EM27/SUN instruments were deployed in the four cardinal directions around the USCB approximately 50 km from the center of the basin. We report on six case studies for which we inferred emissions by evaluating the mismatch between the observed downwind enhancements and simulations based on trajectory calculations releasing particles out of the ventilation shafts using the Lagrangian particle dispersion model FLEXPART. The latter was driven by wind fields calculated by WRF (Weather Research and Forecasting model) under assimilation of vertical wind profile measurements of three co-deployed wind lidars. For emission estimation, we use a Phillips–Tikhonov regularization scheme with the L-curve criterion. Diagnosed by the emissions averaging kernels, we find that, depending on the catchment area of the downwind measurements, our ad hoc network can resolve individual facilities or groups of ventilation facilities but that inspecting the emissions averaging kernels is essential to detect correlated estimates. Generally, our instantaneous emission estimates range between 80 and 133 kt CH4 a−1 for the southeastern part of the USCB and between 414 and 790 kt CH4 a−1 for various larger parts of the basin, suggesting higher emissions than expected from the annual emissions reported by the E-PRTR (European Pollutant Release and Transfer Register). Uncertainties range between 23 % and 36 %, dominated by the error contribution from uncertain wind fields.
    Materialart: Online-Ressource
    ISSN: 1680-7324
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2022
    ZDB Id: 2092549-9
    ZDB Id: 2069847-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 48, No. 5 ( 2021-03-16)
    Kurzfassung: Within the ACT‐America project, we gathered a unique airborne in‐situ N 2 O data set over the U.S. Midwest with enhancements up to 9  ppb N 2 O emissions in the U.S. Midwest were on average 0.42 ± 0.28 nmol m −2  s −1 in October 2017 and 1.06 ± 0.57 nmol m −2  s −1 in June to July 2019 Bottom‐up estimates from EDGAR and DayCent underestimate U.S. Midwest N 2 O emissions by factors up to 20
    Materialart: Online-Ressource
    ISSN: 0094-8276 , 1944-8007
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2021
    ZDB Id: 2021599-X
    ZDB Id: 7403-2
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 20, No. 21 ( 2020-11-03), p. 12675-12695
    Kurzfassung: Abstract. A severe reduction of greenhouse gas emissions is necessary to reach the objectives of the Paris Agreement. The implementation and continuous evaluation of mitigation measures requires regular independent information on emissions of the two main anthropogenic greenhouse gases, carbon dioxide (CO2) and methane (CH4). Our aim is to employ an observation-based method to determine regional-scale greenhouse gas emission estimates with high accuracy. We use aircraft- and ground-based in situ observations of CH4, CO2, carbon monoxide (CO), and wind speed from two research flights over the Upper Silesian Coal Basin (USCB), Poland, in summer 2018. The flights were performed as a part of the Carbon Dioxide and Methane (CoMet) mission above this European CH4 emission hot-spot region. A kriging algorithm interpolates the observed concentrations between the downwind transects of the trace gas plume, and then the mass flux through this plane is calculated. Finally, statistic and systematic uncertainties are calculated from measurement uncertainties and through several sensitivity tests, respectively. For the two selected flights, the in-situ-derived annual CH4 emission estimates are 13.8±4.3 and 15.1±4.0 kg s−1, which are well within the range of emission inventories. The regional emission estimates of CO2, which were determined to be 1.21±0.75 and 1.12±0.38 t s−1, are in the lower range of emission inventories. CO mass balance emissions of 10.1±3.6 and 10.7±4.4 kg s−1 for the USCB are slightly higher than the emission inventory values. The CH4 emission estimate has a relative error of 26 %–31 %, the CO2 estimate of 37 %–62 %, and the CO estimate of 36 %–41 %. These errors mainly result from the uncertainty of atmospheric background mole fractions and the changing planetary boundary layer height during the morning flight. In the case of CO2, biospheric fluxes also add to the uncertainty and hamper the assessment of emission inventories. These emission estimates characterize the USCB and help to verify emission inventories and develop climate mitigation strategies.
    Materialart: Online-Ressource
    ISSN: 1680-7324
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2020
    ZDB Id: 2092549-9
    ZDB Id: 2069847-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 12, No. 3 ( 2019-03-19), p. 1767-1783
    Kurzfassung: Abstract. Tunable laser direct absorption spectroscopy is a widely used technique for the in situ sensing of atmospheric composition. Aircraft deployment poses a challenging operating environment for instruments measuring climatologically relevant gases in the Earth's atmosphere. Here, we demonstrate the successful adaption of a commercially available continuous wave quantum cascade laser (QCL) and interband cascade laser (ICL) based spectrometer for airborne in situ trace gas measurements with a local to regional focus. The instrument measures methane, ethane, carbon dioxide, carbon monoxide, nitrous oxide and water vapor simultaneously, with high 1 s–1σ precision (740 ppt, 205 ppt, 460 ppb, 2.2 ppb, 137 ppt and 16 ppm, respectively) and high frequency (2 Hz). We estimate a total 1 s–1σ uncertainty of 1.85 ppb, 1.6 ppb, 1.0 ppm, 7.0 ppb and 0.8 ppb in CH4, C2H6, CO2, CO and N2O, respectively. The instrument enables simultaneous and continuous observations for all targeted species. Frequent calibration allows for a measurement duty cycle ≥90 %. Custom retrieval software has been implemented and instrument performance is reported for a first field deployment during NASA's Atmospheric Carbon and Transport – America (ACT-America) campaign in fall 2017 over the eastern and central USA. This includes an inter-instrumental comparison with a calibrated cavity ring-down greenhouse gas analyzer (operated by NASA Langley Research Center, Hampton, USA) and periodic flask samples analyzed at the National Oceanic and Atmospheric Administration (NOAA). We demonstrate good agreement of the QCL- and ICL-based instrument to these concurrent observations within the combined measurement uncertainty after correcting for a constant bias. We find that precise knowledge of the δ13C of the working standards and the sampled air is needed to enhance CO2 compatibility when operating on the 2227.604 cm−1 13C16O2 absorption line.
    Materialart: Online-Ressource
    ISSN: 1867-8548
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2019
    ZDB Id: 2505596-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...