GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 118 (2013): 2052–2066, doi:10.1002/jgrc.20144.
    Description: This study considered cross-frontal exchange as a possible mechanism for the observed along-front freshening and cooling between the 27.0 and 27.3 kg m − 3 isopycnals north of the Subantarctic Front (SAF) in the southeast Pacific Ocean. This isopycnal range, which includes the densest Subantarctic Mode Water (SAMW) formed in this region, is mostly below the mixed layer, and so experiences little direct air-sea forcing. Data from two cruises in the southeast Pacific were examined for evidence of cross-frontal exchange; numerous eddies and intrusions containing Polar Frontal Zone (PFZ) water were observed north of the SAF, as well as a fresh surface layer during the summer cruise that was likely due to Ekman transport. These features penetrated north of the SAF, even though the potential vorticity structure of the SAF should have acted as a barrier to exchange. An optimum multiparameter (OMP) analysis incorporating a range of observed properties was used to estimate the cumulative cross-frontal exchange. The OMP analysis revealed an along-front increase in PFZ water fractional content in the region north of the SAF between the 27.1 and 27.3 kg m − 3 isopycnals; the increase was approximately 0.13 for every 15° of longitude. Between the 27.0 and 27.1 kg m − 3 isopycnals, the increase was approximately 0.15 for every 15° of longitude. A simple bulk calculation revealed that this magnitude of cross-frontal exchange could have caused the downstream evolution of SAMW temperature and salinity properties observed by Argo profiling floats.
    Description: NSF Ocean Sciences grant OCE-0327544 supported L.D.T., T.K.C., and J.H. and funded the two research cruises; NSF Ocean Sciences grant OCE-0850869 funded part of the analysis. BMS’s contribution to this work was undertaken as part of the Australian Climate Change Science Program, funded jointly by the Department of Climate Change and CSIRO.
    Description: 2013-10-23
    Keywords: Subantarctic Mode Water ; Southern Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 8162–8176, doi:10.1002/2014JC010256.
    Description: The surface layer of the southeast Pacific Ocean (SEP) requires an input of cold, fresh water to balance heat gain, and evaporation from air-sea fluxes. Models typically fail to reproduce the cool sea surface temperatures (SST) of the SEP, limiting our ability to understand the variability of this climatically important region. We estimate the annual heat budget of the SEP for the period 2004–2009, using data from the upper 250 m of the Stratus mooring, located at 85°W 20°S, and from Argo floats. The surface buoy measures meteorological conditions and air-sea fluxes; the mooring line is heavily instrumented, measuring temperature, salinity, and velocity at more than 15 depth levels. We use a new method for estimating the advective component of the heat budget that combines Argo profiles and mooring velocity data, allowing us to calculate monthly profiles of heat advection. Averaged over the 6 year study period, we estimate a cooling advective heat flux of −41 ± 29 W m−2, accomplished by a combination of the mean gyre circulation, Ekman transport, and eddies. This compensates for warming fluxes of 32 ± 4 W m−2 due to air-sea fluxes and 7 ± 9 W m−2 due to vertical mixing and Ekman pumping. A salinity budget exhibits a similar balance, with advection of freshwater (−60 psu m) replenishing the freshwater lost through evaporation (47 psu m) and Ekman pumping (14 psu m).
    Description: This work was supported by NOAA's Climate Program Office and by NSF grant OCE-0745508.
    Description: 2015-05-28
    Keywords: Southeast Pacific ; Heat budget ; Argo ; Stratus mooring
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C03040, doi:10.1029/2011JC007798.
    Description: Two hydrographic surveys and a one-dimensional mixed layer model are used to assess the role of air-sea fluxes in forming deep Subantarctic Mode Water (SAMW) mixed layers in the southeast Pacific Ocean. Forty-two SAMW mixed layers deeper than 400 m were observed north of the Subantarctic Front during the 2005 winter cruise, with the deepest mixed layers reaching 550 m. The densest, coldest, and freshest mixed layers were found in the cruise's eastern sections near 77°W. The deep SAMW mixed layers were observed concurrently with surface ocean heat loss of approximately −200 W m−2. The heat, momentum, and precipitation flux fields of five flux products are used to force a one-dimensional KPP mixed layer model initialized with profiles from the 2006 summer cruise. The simulated winter mixed layers generated by all of the forcing products resemble Argo observations of SAMW; this agreement also validates the flux products. Mixing driven by buoyancy loss and wind forcing is strong enough to deepen the SAMW layers. Wind-driven mixing is central to SAMW formation, as model runs forced with buoyancy forcing alone produce shallow mixed layers. Air-sea fluxes indirectly influence winter SAMW properties by controlling how deeply the profiles mix. The stratification and heat content of the initial profiles determine the properties of the SAMW and the likelihood of deep mixing. Summer profiles from just upstream of Drake Passage have less heat stored between 100 and 600 m than upstream profiles, and so, with sufficiently strong winter forcing, form a cold, dense variety of SAMW.
    Description: NSF Ocean Sciences grant OCE-0327544 supported LDT, TKC, and JH and funded the two research cruises. BMS’s contribution to this work was undertaken as part of the Australian Climate Change Science Program, funded jointly by the Department of Climate Change and Energy Efficiency and CSIRO. The QuikSCAT wind mapping method [Kelly et al., 1999], used to create the Kelly flux product, was sponsored by NASA’s Ocean Vector Winds Science. NCEP Reanalysis data were provided by the NOAA/OAR/ESRL PSD. WHOI’s OAFlux project is funded by the NOAA Climate Observations and Monitoring (COM) program.
    Description: 2012-09-29
    Keywords: ACC ; Subantarctic Mode Water ; Mixed layers ; Mode water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 2295–2309, doi:10.1002/jgrc.20175.
    Description: A number of studies have posited that coastally generated eddies could cool the southeast Pacific Ocean (SEP) by advecting cool, upwelled waters offshore. We examine this mechanism by characterizing the upper-ocean properties of mesoscale eddies in the SEP with a variety of observations and by estimating the surface-layer eddy heat flux divergence with satellite data. Cyclonic and anticyclonic eddies observed during two cruises featured deep positive salinity anomalies along the 26.5 kg m−3isopycnal, indicating that the eddies had likely trapped and transported coastal waters offshore. The cyclonic eddies observed during the cruises were characterized by shoaling isopycnals in the upper 200 m and cool near-surface temperature anomalies, whereas the upper-ocean structure of anticyclonic eddies was more variable. Using a variety of large-scale observations, including Argo float profiles, drifter records, and satellite sea surface temperature fields, we show that, relative to mean conditions, cyclonic eddies are associated with cooler surface temperatures and that anticyclonic eddies are associated with warmer surface temperatures. Within each data set, the mean eddy surface temperature anomalies are small and of approximately equal magnitude but opposite sign. Eddy statistics drawn from satellite altimetry data reveal that cyclonic and anticyclonic eddies occur with similar frequency and have similar average radii in the SEP. A satellite-based estimate of the surface-layer eddy heat flux divergence, while large in coastal regions, is small when averaged over the SEP, suggesting that eddies do not substantially contribute to cooling the surface layer of the SEP.
    Description: This work was supported by NOAA’s Climate Program Office and by NSF Grant OCE-0745508. Microwave OI SST data are produced by Remote Sensing Systems and sponsored by National Oceanographic Partnership Program (NOPP), the NASA Earth Science Physical Oceanography Program, and the NASA MEaSUREs DISCOVER Project.
    Keywords: Southeast Pacific ; Eddies ; Upper-ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology, air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with past cruises that have come between October and January. A NOAA vessel was not available, so this cruise was conducted on the chartered ship, Moana Wave, belonging to Stabbert Maritime. During the 2011 cruise on the Moana Wave to the ORS Stratus site, the primary activities were the recovery of the subsurface part of the Stratus 10 WHOI surface mooring, deployment of a new (Stratus 11) WHOI surface mooring, in-situ calibration of the buoy meteorological sensors by comparison with instrumentation installed on the ship by staff of the NOAA Earth System Research Laboratory (ESRL), and collection of underway and on station oceanographic data to continue to characterize the upper ocean in the stratus region. The Stratus 10 mooring had parted, and the surface buoy and upper part had been recovered earlier. Underway CTD (UCTD) profiles were collected along the track and during surveys dedicated to investigating eddy variability in the region. Surface drifters and subsurface floats were also launched along the track. The intent was also to visit a buoy for the Pacific tsunami warning system maintained by the Hydrographic and Oceanographic Service of the Chilean Navy (SHOA). This DART (Deep- Ocean Assessment and Reporting of Tsunami) buoy had been deployed in December 2010.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA0900AR4320129
    Keywords: Moana Wave (Ship) Cruise Stratus 11 ; Marine meteorology ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology, air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually. A NOAA vessel was not available, so this cruise was conducted on the Melville, operated by the Scripps Institution of Oceanography. During the 2012 cruise on the Melville to the ORS Stratus site, the primary activities were the deployment of the Stratus 12 WHOI surface mooring, recovery of the previous (Stratus 11) WHOI surface mooring, in-situ calibration of the buoy meteorological sensors by comparison with instrumentation installed on the ship, and collection of underway and on station oceanographic data to continue to characterize the upper ocean in the stratus region. Underway CTD (UCTD) profiles were collected along the track. Surface drifters and subsurface floats were also launched along the track.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA09OAR4320129.
    Keywords: Melville (Ship) Cruise Stratus 12 ; Marine meteorology ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(10), (2020): 2849-2871, https://doi.org/10.1175/JPO-D-20-0086.1.
    Description: The structure, transport, and seasonal variability of the West Greenland boundary current system near Cape Farewell are investigated using a high-resolution mooring array deployed from 2014 to 2018. The boundary current system is comprised of three components: the West Greenland Coastal Current, which advects cold and fresh Upper Polar Water (UPW); the West Greenland Current, which transports warm and salty Irminger Water (IW) along the upper slope and UPW at the surface; and the Deep Western Boundary Current, which advects dense overflow waters. Labrador Sea Water (LSW) is prevalent at the seaward side of the array within an offshore recirculation gyre and at the base of the West Greenland Current. The 4-yr mean transport of the full boundary current system is 31.1 ± 7.4 Sv (1 Sv ≡ 106 m3 s−1), with no clear seasonal signal. However, the individual water mass components exhibit seasonal cycles in hydrographic properties and transport. LSW penetrates the boundary current locally, through entrainment/mixing from the adjacent recirculation gyre, and also enters the current upstream in the Irminger Sea. IW is modified through air–sea interaction during winter along the length of its trajectory around the Irminger Sea, which converts some of the water to LSW. This, together with the seasonal increase in LSW entering the current, results in an anticorrelation in transport between these two water masses. The seasonality in UPW transport can be explained by remote wind forcing and subsequent adjustment via coastal trapped waves. Our results provide the first quantitatively robust observational description of the boundary current in the eastern Labrador Sea.
    Description: A.P., R.S.P., F.B., D.J.T., and A.L.R. were funded by Grants OCE-1259618 and OCE-1756361 from the National Science Foundation. I.L.B, F.S., and J.H. were supported by U.S. National Science Foundation Grants OCE-1258823 and OCE-1756272. Mooring data from MA2 was funded by the European Union 7th Framework Programme (FP7 2007-2013) under Grant 308299 (NACLIM) and the Horizon 2020 research and innovation program under Grant 727852 (Blue-Action). J.K. and M.O. acknowledge EU Horizon 2020 funding Grants 727852 (Blue-action) and 862626 (EuroSea) and from the German Ministry of Research and Education (RACE Program). G.W.K.M. acknowledges funding from the Natural Sciences and Engineering Research Council.
    Keywords: Boundary currents ; Convection ; Deep convection ; Transport ; In situ oceanic observations ; Seasonal cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Li, F., Lozier, M. S., Bacon, S., Bower, A. S., Cunningham, S. A., de Jong, M. F., DeYoung, B., Fraser, N., Fried, N., Han, G., Holliday, N. P., Holte, J., Houpert, L., Inall, M. E., Johns, W. E., Jones, S., Johnson, C., Karstensen, J., Le Bras, I. A., P. Lherminier, X. Lin, H. Mercier, M. Oltmanns, A. Pacini, T. Petit, R. S. Pickart, D. Rayner, F. Straneo, V. Thierry, M. Visbeck, I. Yashayaev & Zhou, C. Subpolar North Atlantic western boundary density anomalies and the Meridional Overturning Circulation. Nature Communications, 12(1), (2021): 3002, https://doi.org/10.1038/s41467-021-23350-2.
    Description: Changes in the Atlantic Meridional Overturning Circulation, which have the potential to drive societally-important climate impacts, have traditionally been linked to the strength of deep water formation in the subpolar North Atlantic. Yet there is neither clear observational evidence nor agreement among models about how changes in deep water formation influence overturning. Here, we use data from a trans-basin mooring array (OSNAP—Overturning in the Subpolar North Atlantic Program) to show that winter convection during 2014–2018 in the interior basin had minimal impact on density changes in the deep western boundary currents in the subpolar basins. Contrary to previous modeling studies, we find no discernable relationship between western boundary changes and subpolar overturning variability over the observational time scales. Our results require a reconsideration of the notion of deep western boundary changes representing overturning characteristics, with implications for constraining the source of overturning variability within and downstream of the subpolar region.
    Description: We acknowledge funding from the Physical Oceanography Program of the U.S. National Science Foundation (OCE-1259398, OCE-1756231, OCE-1948335); the U.K. Natural Environment Research Council (NERC) National Capability programs the Extended Ellett Line and CLASS (NE/R015953/1), and NERC grants UK-OSNAP (NE/K010875/1, NE/K010875/2, NE/K010700/1) and U.K. OSNAP Decade (NE/T00858X/1, NE/T008938/1). Additional support was received from the European Union 7th Framework Program (FP7 2007-2013) under grant 308299 (NACLIM), the Horizon 2020 research and innovation program under grants 727852 (Blue-Action), 862626 (EuroSea). We also acknowledge support from the Royal Netherlands Institute for Sea Research, the Surface Water and Ocean Topography-Canada (SWOT-C), Canadian Space Agency, the Aquatic Climate Change Adaptation Services Program (ACCASP), Fisheries and Oceans Canada, an Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant, and from the China’s national key research and development projects (2016YFA0601803), the National Natural Science Foundation of China (41925025) and the Fundamental Research Funds for the Central Universities (201424001). Support for the 53°N array by the RACE program of the German Ministry BMBF is acknowledged, as is the contribution from Fisheries and Oceans Canada’s Atlantic Zone Monitoring Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-04
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biló, T., Straneo, F., Holte, J., & Le Bras, I. Arrival of new great salinity anomaly weakens convection in the Irminger Sea. Geophysical Research Letters, 49(11), (2022): e2022GL098857, https://doi.org/10.1029/2022gl098857.
    Description: The Subpolar North Atlantic is prone to recurrent extreme freshening events called Great Salinity Anomalies (GSAs). Here, we combine hydrographic ocean analyses and moored observations to document the arrival, spreading, and impacts of the most recent GSA in the Irminger Sea. This GSA is associated with a rapid freshening of the upper Irminger Sea between 2015 and 2020, culminating in annually averaged salinities as low as the freshest years of the 1990s and possibly since 1960. Upon the GSA propagation into the Irminger Sea over the Reykjanes Ridge, the boundary currents rapidly advected its signal around the basin within months while fresher waters slowly spread and accumulated into the interior. The anomalies in the interior freshened waters produced by deep convection during the 2017–2018 winter and actively contributed to the suppression of deep convection in the following two winters.
    Description: We gratefully acknowledge the US National Science Foundation for funding this work under grants OCE-1258823, OCE-1756272, OCE-1948335, and OCE-2038481.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-06-17
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(3), (2022): 363–382, https://doi.org/10.1175/jpo-d-21-0084.1.
    Description: Meltwater from Greenland is an important freshwater source for the North Atlantic Ocean, released into the ocean at the head of fjords in the form of runoff, submarine melt, and icebergs. The meltwater release gives rise to complex in-fjord transformations that result in its dilution through mixing with other water masses. The transformed waters, which contain the meltwater, are exported from the fjords as a new water mass Glacially Modified Water (GMW). Here we use summer hydrographic data collected from 2013 to 2019 in Upernavik, a major glacial fjord in northwest Greenland, to describe the water masses that flow into the fjord from the shelf and the exported GMWs. Using an optimum multi-parameter technique across multiple years we then show that GMW is composed of 57.8% ± 8.1% Atlantic Water (AW), 41.0% ± 8.3% Polar Water (PW), 1.0% ± 0.1% subglacial discharge, and 0.2% ± 0.2% submarine meltwater. We show that the GMW fractional composition cannot be described by buoyant plume theory alone since it includes lateral mixing within the upper layers of the fjord not accounted for by buoyant plume dynamics. Consistent with its composition, we find that changes in GMW properties reflect changes in the AW and PW source waters. Using the obtained dilution ratios, this study suggests that the exchange across the fjord mouth during summer is on the order of 50 mSv (1 Sv ≡ 106 m3 s−1) (compared to a freshwater input of 0.5 mSv). This study provides a first-order parameterization for the exchange at the mouth of glacial fjords for large-scale ocean models.
    Description: This work was partially supported by the Centre for Climate Dynamics (SKD) at the Bjerknes Centre for Climate Research. The authors thank NASA and the OMG consortium for making observational data freely available, and acknowledge M. Morlighem for good support in the early stages of this project. MM and LHS and would also like to thank Ø. Paasche, the ACER project, and the U.S. Norway Fulbright Foundation for the Norwegian Arctic Chair Grant 2019–20 that made the visit to Scripps Institution of Oceanography possible. FS acknowledges support from the DOE Office of Science Grant DE-SC0020073, Heising-Simons Foundation and from NSF and OCE-1756272. DAS acknowledges support from U.K. NERC Grants NE/P011365/1, NE/T011920/1, and NERC Independent Research Fellowship NE/T011920/1. MW was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by the Universities Space Research Association under contract with NASA. CSA would like to acknowledge Geocenter Denmark for support to the project “Upernavik Glacier.”
    Keywords: Ocean ; Arctic ; Atlantic Ocean ; Glaciers ; Ice sheets ; Buoyancy ; Entrainment ; In situ oceanic observations ; Annual variations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...