GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Publication Date: 2017-04-04
    Description: Society’s needs for a network of in situ ocean observing systems cross many areas of earth and marine science. Here we review the science themes that benefit from data supplied from ocean observatories. Understanding from existing studies is fragmented to the extent that it lacks the coherent long-term monitoring needed to address questions at the scales essential to understand climate change and improve geo-hazard early warning. Data sets from the deep sea are particularly rare with long-term data available from only a few locations worldwide. These science areas have impacts on societal health and well-being and our awareness of ocean function in a shifting climate. Substantial efforts are underway to realise a network of open-ocean observatories around European Seas that will operate over multiple decades. Some systems are already collecting high-resolution data from surface, water column, seafloor, and sub-seafloor sensors linked to shore by satellite or cable connection in real or near-real time, along with samples and other data collected in a delayed mode. We expect that such observatories will contribute to answering major ocean science questions including: How can monitoring of factors such as seismic activity, pore fluid chemistry and pressure, and gas hydrate stability improve seismic, slope failure, and tsunami warning? What aspects of physical oceanography, biogeochemical cycling, and ecosystems will be most sensitive to climatic and anthropogenic change? What are natural versus anthropogenic changes? Most fundamentally, how are marine processes that occur at differing scales related? The development of ocean observatories provides a substantial opportunity for ocean science to evolve in Europe. Here we also describe some basic attributes of network design. Observatory networks provide the means to coordinate and integrate the collection of standardised data capable of bridging measurement scales across a dispersed area in European Seas adding needed certainty to estimates of future oceanic conditions. Observatory data can be analysed along with other data such as those from satellites, drifting floats, autonomous underwater vehicles, model analysis, and the known distribution and abundances of marine fauna in order to address some of the questions posed above. Standardised methods for information management are also becoming established to ensure better accessibility and traceability of these data sets and ultimately to increase their use for societal benefit. The connection of ocean observatory effort into larger frameworks including the Global Earth Observation System of Systems (GEOSS) and the Global Monitoring of Environment and Security (GMES) is integral to its success. It is in a greater integrated framework that the full potential of the component systems will be realised.
    Description: Published
    Description: 1-33
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: Seafloor and water columnobservatories ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability ; 03. Hydrosphere::03.03. Physical::03.03.05. Instruments and techniques ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transport ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data ; 05. General::05.08. Risk::05.08.01. Environmental risk ; 05. General::05.08. Risk::05.08.02. Hydrogeological risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-24
    Description: In this paper we provide an overview of new knowledge on oxygen depletion (hypoxia) and related phenomena in aquatic systems resulting from the EU-FP7 project HYPOX (“In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and landlocked water bodies”, www.hypox.net). In view of the anticipated oxygen loss in aquatic systems due to eutrophication and climate change, HYPOX was set up to improve capacities to monitor hypoxia as well as to understand its causes and consequences. Temporal dynamics and spatial patterns of hypoxia were analyzed in field studies in various aquatic environments, including the Baltic Sea, the Black Sea, Scottish and Scandinavian fjords, Ionian Sea lagoons and embayments, and Swiss lakes. Examples of episodic and rapid (hours) occurrences of hypoxia, as well as seasonal changes in bottom-water oxygenation in stratified systems, are discussed. Geologically driven hypoxia caused by gas seepage is demonstrated. Using novel technologies, temporal and spatial patterns of watercolumn oxygenation, from basin-scale seasonal patterns to meter-scale sub-micromolar oxygen distributions, were resolved. Existing multidecadal monitoring data were used to demonstrate the imprint of climate change and eutrophication on long-term oxygen distributions. Organic and inorganic proxies were used to extend investigations on past oxygen conditions to centennial and even longer timescales that cannot be resolved by monitoring. The effects of hypoxia on faunal communities and biogeochemical processes were also addressed in the project. An investigation of benthic fauna is presented as an example of hypoxia-devastated benthic communities that slowly recover upon a reduction in eutrophication in a system where naturally occurring hypoxia overlaps with anthropogenic hypoxia. Biogeochemical investigations reveal that oxygen intrusions have a strong effect on the microbially mediated redox cycling of elements. Observations and modeling studies of the sediments demonstrate the effect of seasonally changing oxygen conditions on benthic mineralization pathways and fluxes. Data quality and access are crucial in hypoxia research. Technical issues are therefore also addressed, including the availability of suitable sensor technology to resolve the gradual changes in bottom-water oxygen in marine systems that can be expected as a result of climate change. Using cabled observatories as examples, we show how the benefit of continuous oxygen monitoring can be maximized by adopting proper quality control. Finally, we discuss strategies for state-of-the-art data archiving and dissemination in compliance with global standards, and how ocean observations can contribute to global earth observation attempts.
    Description: Published
    Description: 1215-1259
    Description: 7A. Geofisica di esplorazione
    Description: JCR Journal
    Description: open
    Keywords: Hypoxia, oceans, gas ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: Fluorescence at wavelengths characteristic of humic substances (excitation 350 nm, emission 450 nm) have been used in this study to approximate concentrationsof fluorescent dissolved organic material (FDOM). In situ regulated and unregulated benthic chambers, sediment cores, and laboratory tank incubations were usedto study early diagenesis of FDOM in coastal marine sediments of the Gullmar Fjord, western Sweden. In the regulated in situ chambers, pH and oxygen werekept at relatively stable levels, while in the unregulated in situ chambers, pH and oxygen were left to decrease as a result of biological activity. FDOM porewaterdistributions and correlation between FDOM and parameters indicating mineralization showed that FDOM was formed in the sediment and should flux across thesediment-water interface. A substantial flux of FDOM was also observed during winter and spring conditions and during anoxic conditions fall. However, no fluxwas observed during oxic conditions fall. Modeling indicated that oxygen penetration depth was deeper during winter than during fall, i.e., the oxygen penetrationdepth increased during fall towards winter values. We suggest that as FeOOH was formed when oxygen penetration depths increased, FDOM was sorbed tonewly formed FeOOH, inhibiting FDOM flux over the sediment-water interface. In addition, at onset of anoxic conditions in the sediment surface layer in fallincubations, FDOM flux from sediment to overlying water increased substantially. Increases in anoxic FDOM fluxes were accompanied by increases in Fe andphosphate fluxes. We suggest that reductively dissolved FeOOH released sorbed FDOM. FDOM released from FeOOH by anoxic conditions was not resorbedwhen oxic conditions were resumed. This could be an effect of higher pH in overlying water as compared with porewater, inhibiting FeOOH sorption of FDOM.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-09-17
    Description: Marine coastal ecosystems are among the most productive and diverse communities on Earth and are of global importance to climate, nutrient budgets, and primary productivity. Yet, these ecosystems, and in particular sedentary benthic (bottom-living) invertebrate communities at their base, are compromised by human-induced stresses, including overfishing, habitat destruction, and pollution. Emerging environmental legislation such as the Water Framework Directive (WFD) has the potential to significantly improve the ecological status of Europes aquatic ecosystems, from rivers to the sea. However, depending upon how it is interpreted and implemented, it has the potential to impact many activities in coastal systems, including flood defence, coastal development, dredging, aquaculture and fishing. There is a critical need for a set of biogeochemical measures to assist in the characterisation of ecological function, status and potential in coastal benthic ecosystems. The FP6-funded Coastal Ocean Benthic Observatories (COBO, http://www.cobo.org.uk) program integrates in situ technologies to monitor benthic habitats, in order to understand how anthropogenic impacts affect benthic ecosystem functioning. As a complement to blind, synoptic sampling and laboratory studies, in situ studies provide rigorous scientific insight into the interactions between the biota (function and diversity) and their chemical and physical environment and the processes regulating this habitat within the context of dynamic processes that occur over many spatial and temporal scales. COBO allows for interdisciplinary, in situ observation and experimentation in these complex, remote and poorly understood ecosystems, both providing fundamental understanding of the interactions between the biota and their environment and facilitating informed management of human impacts on coastal ecosystems. Conceptual frameworks and communication tools are being developed using visualisation software, advanced numerical tools and a DPSIR approach to link scientific results with policy, measures and approaches for coastal ecosystem management.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-10-07
    Description: In this paper we provide an overview of new knowledge on oxygen depletion (hypoxia) and related phenomena in aquatic systems resulting from the EU-FP7 project HYPOX (“In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and landlocked water bodies”, www.hypox.net). In view of the anticipated oxygen loss in aquatic systems due to eutrophication and climate change, HYPOX was set up to improve capacities to monitor hypoxia as well as to understand its causes and consequences. Temporal dynamics and spatial patterns of hypoxia were analyzed in field studies in various aquatic environments, including the Baltic Sea, the Black Sea, Scottish and Scandinavian fjords, Ionian Sea lagoons and embayments, and Swiss lakes. Examples of episodic and rapid (hours) occurrences of hypoxia, as well as seasonal changes in bottom-water oxygenation in stratified systems, are discussed. Geologically driven hypoxia caused by gas seepage is demonstrated. Using novel technologies, temporal and spatial patterns of watercolumn oxygenation, from basin-scale seasonal patterns to meter-scale sub-micromolar oxygen distributions, were resolved. Existing multidecadal monitoring data were used to demonstrate the imprint of climate change and eutrophication on long-term oxygen distributions. Organic and inorganic proxies were used to extend investigations on past oxygen conditions to centennial and even longer timescales that cannot be resolved by monitoring. The effects of hypoxia on faunal communities and biogeochemical processes were also addressed in the project. An investigation of benthic fauna is presented as an example of hypoxia-devastated benthic communities that slowly recover upon a reduction in eutrophication in a system where naturally occurring hypoxia overlaps with anthropogenic hypoxia. Biogeochemical investigations reveal that oxygen intrusions have a strong effect on the microbially mediated redox cycling of elements. Observations and modeling studies of the sediments demonstrate the effect of seasonally changing oxygen conditions on benthic mineralization pathways and fluxes. Data quality and access are crucial in hypoxia research. Technical issues are therefore also addressed, including the availability of suitable sensor technology to resolve the gradual changes in bottom-water oxygen in marine systems that can be expected as a result of climate change. Using cabled observatories as examples, we show how the benefit of continuous oxygen monitoring can be maximized by adopting proper quality control. Finally, we discuss strategies for state-of-the-art data archiving and dissemination in compliance with global standards, and how ocean observations can contribute to global earth observation attempts.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Pore water and solid phase distributions of C, N, P and Si in sediments of the Arctic Ocean (Svalbard area) have been investigated. Concentrations of organic carbon (Corg) in the solid phase of the sediment varied from 1.3 to 2.8% (mean 1.9%), with highest concentrations found at shallow stations south/southwest of Svalbard. Relatively low concentrations were obtained at the deeper stations north/northeast of Svalbard. Atomic carbon to nitrogen ratios in the surface sediment ranged from below 8 to above 10. For some stations, high C/N ratios together with high concentrations of Corg suggest that sedimentary organic matter is mainly of terrigenous origin and not from overall biological activity in the water column. Organic matter reactivity (defined as the total sediment oxygen consumption rate normalized to the organic carbon content of the surface sediment) correlated with water depth at all investigated stations. However, the stations could be divided into two separate groups with different reactivity characteristics, representing the two most dominant hydrographic regimes: the region west of Svalbard mainly influenced by the West Spitsbergen Current, and the area east of Svalbard where Arctic polar water set the environmental conditions. Decreasing sediment reactivity with water depth was confirmed by the partitioning between organic and inorganic carbon of the surface sediment. The ratio between organic and inorganic carbon at the sediment-water interface decreased exponentially with water depth: from indefinite values at shallow stations in the central Barents Sea, to approximately 1 at deep stations north of Svalbard. At stations east of Svalbard there was an inverse linear correlation between the organic matter reactivity (as defined above) and concentration of dissolved organic carbon (DOC) in the pore water. The more reactive the sediment, the less DOC existed in the pore water and the more total carbonate (Ct or ΣCO2) was present. This observation suggests that DOC produced in reactive sediments is easily metabolizable to CO2. Sediment accumulation rates of opaline silica ranged from 0.35 to 5.7 µmol SiO2 m−2d−1 (mean 1.3 µmol SiO2 m−2d−1), i.e. almost 300 times lower than rates previously reported for the Ross Sea, Antarctica. Concentrations of ammonium and nitrate in the pore water at the sediment-water interface were related to organic matter input and water depth. In shallow regions with highly reactive organic matter, a pool of ammonium was present in the pore water, while nitrate conoentrations were low. In areas where less reactive organic matter was deposited at the sediment surface, the deeper zone of nitrification caused a build-up of nitrate in the pore water while ammonium was almost depleted. Nitrate penetrated from 1.8 to ≥ 5.8 cm into the investigated sediments. Significantly higher concentrations of “total” dissolved nitrogen (defined as the sum of NO3, NO2, NH4 and urea) in sediment pore water were found west compared to east of Svalbard. The differences in organic matter reactivity, as well as in pore water distribution patterns of “total” dissolved nitrogen between the two areas, probably reflect hydrographic factors (such as ice coverage and production/import of particulate organic material) related to the dominant water mass (Atlantic or Arctic Polar) in each of the two areas.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: In this paper we provide an overview of new knowledge on oxygen depletion (hypoxia) and related phenomena in aquatic systems resulting from the EU-FP7 project HYPOX ("In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and landlocked water bodies", www.hypox.net). In view of the anticipated oxygen loss in aquatic systems due to eutrophication and climate change, HYPOX was set up to improve capacities to monitor hypoxia as well as to understand its causes and consequences. Temporal dynamics and spatial patterns of hypoxia were analyzed in field studies in various aquatic environments, including the Baltic Sea, the Black Sea, Scottish and Scandinavian fjords, Ionian Sea lagoons and embayments, and Swiss lakes. Examples of episodic and rapid (hours) occurrences of hypoxia, as well as seasonal changes in bottom-water oxygenation in stratified systems, are discussed. Geologically driven hypoxia caused by gas seepage is demonstrated. Using novel technologies, temporal and spatial patterns of water-column oxygenation, from basin-scale seasonal patterns to meter-scale sub-micromolar oxygen distributions, were resolved. Existing multidecadal monitoring data were used to demonstrate the imprint of climate change and eutrophication on long-term oxygen distributions. Organic and inorganic proxies were used to extend investigations on past oxygen conditions to centennial and even longer timescales that cannot be resolved by monitoring. The effects of hypoxia on faunal communities and biogeochemical processes were also addressed in the project. An investigation of benthic fauna is presented as an example of hypoxia-devastated benthic communities that slowly recover upon a reduction in eutrophication in a system where naturally occurring hypoxia overlaps with anthropogenic hypoxia. Biogeochemical investigations reveal that oxygen intrusions have a strong effect on the microbially mediated redox cycling of elements. Observations and modeling studies of the sediments demonstrate the effect of seasonally changing oxygen conditions on benthic mineralization pathways and fluxes. Data quality and access are crucial in hypoxia research. Technical issues are therefore also addressed, including the availability of suitable sensor technology to resolve the gradual changes in bottom-water oxygen in marine systems that can be expected as a result of climate change. Using cabled observatories as examples, we show how the benefit of continuous oxygen monitoring can be maximized by adopting proper quality control. Finally, we discuss strategies for state-of-the-art data archiving and dissemination in compliance with global standards, and how ocean observations can contribute to global earth observation attempts.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...