GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 415 (2002), S. 124-125 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Deep-sea hydrothermal activity was discovered only in 1977, on the sea floor near the Galapagos Islands, so it is little wonder that the phenomenon continues to spring surprises. Hydrothermal vents arise where cold sea water interacts with freshly formed, hot ocean crust along chains of submarine ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  [Invited talk] In: 3. InterRidge Theoretical Institute, 25.-27.09.2015, Hangzhou, China .
    Publication Date: 2016-12-05
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-24
    Description: The Arctic Ocean is currently undergoing a dramatic change. Decreasing sea-ice extent, thickness and age are changing important processes in the climate system. An increasing coverage of the sea ice by melt ponds and an increased amount of light transmitted to the upper ocean are also affecting the ice associated ecosystem. To document these changes, we operated different remotely operated vehicles (ROV) underneath the drifting sea ice of the Central Arctic Ocean. The newest underwater technology combined with a highly interdisciplinary sensor suite was successfully used for scientific investigations directly under the sea ice. The unique dataset of novel observations provided insights into the partitioning of solar shortwave radiation in and under sea ice, the deformation and topography of the ice cover, the distribution of sea-ice algae and ice algal aggregates and the ice associated primary production. The large range covered by the ROV surveys enabled us to quantify the spatial variability of physical as well as habitat properties. Despite the harsh climatic conditions and logistical difficulties in the high Arctic, the latest ROV technology proved to be a valuable tool for interdisciplinary sea-ice research.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-01-21
    Description: The HACON cruise is a major component of the FRINATEK HACON project, which aims at investigating the role of the Gakkel Ridge and Arctic Ocean in biological connectivity amongst ocean basins and global biogeography of chemosynthetic ecosystems. The HACON study area is centered in the Aurora seamount and Aurora vent field.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-04-20
    Description: The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy balance of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy and thus plays a crucial role for sea-ice-melt as well as for the amount and timing of under-ice primary production. Recent developments in underwater technology provide new opportunities to undertake challenging research at the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance onboard the new Nereid Under-Ice (Nereid-UI) under- water robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. Nereid-UI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely-piloted and autonomous surveys underneath fixed and moving sea ice. Here we present results from the first comprehensive scientific dive of Nereid-UI employing its interdisci- plinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance on floe scale. Our results indicate that surface properties dominate the spatial distribution of the under-ice light field, while sea ice-thickness and snow-depth are most important for mean light levels.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev , info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-01-30
    Description: Particles determine the residence time of many dissolved elements in seawater. Although a substantial number of field studies were conducted in the framework of major oceanographic programs as GEOSECS and JGOFS, knowledge about particle dynamics is still scarce. Moreover, the particulate trace metal behavior remains largely unknown. The GEOSECS sampling strategy during the 1970s focused on large sections across oceanic basins, where particles were collected by membrane filtration after Niskin bottle sampling, biasing the sampling toward the small particle pool. Late in this period, the first in situ pumps allowing large volume sampling were also developed. During the 1990s, JGOFS focused on the quantifi- cation of the ‘‘exported carbon flux’’ and its seasonal variability in representative biogeochemical prov- inces of the ocean, mostly using sediment trap deployments. Although scarce and discrete in time and space, these pioneering studies allowed an understanding of the basic fate of marine particles. This understanding improved considerably, especially when the analysis of oceanic tracers such as natural radionuclides allowed the first quantification of processes such as dissolved-particle exchange and par- ticle settling velocities. Because the GEOTRACES program emphasizes the importance of collecting, char- acterizing and analyzing marine particles, this paper reflects our present understanding of the sources, fate and sinks of oceanic particles at the early stages of the program.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...