1 2	What did we learn about ocean particle dynamics in the GEOSECS-JGOFS era?
3	Catherine Jeandel ¹ , Michiel Rutgers van der Loeff ² , Phoebe J. Lam ³ , Matthieu Roy-
4	Barman ⁴ , Robert M. Sherrell ⁵ , Sven Kretschmer ² , Chris German ³ and Frank Dehairs ⁶
5	1- Observatoire Midi-Pyrénées-14, avenue Edouard Belin-31400-Toulouse-France
6	Catherine.jeandel@legos.obs-mip.fr
7 8	2- Alfred-Wegener Institute for Polar and Marine Research, am Handelshafen 12, D-27570, Bremerhaven, Germany.
9	3- Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
10	4- LSCE/IPSL Laboratoire CNRS/CEA/UVSQ, Domaine du CNRS, Bat 12
11	Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
12	5-Institute of Marine and Coastal Sciences and Department of Earth and Planetary
13 14	Sciences, Rutgers University, 71 Dudley Road New Brunswick, NJ 08901-8521 6- Vrije Universiteit Brussel, ESSC Research Group, Pleinlaan 2, 1050 Brussels,
15	Belgium
16	
17	Key words: Historical review. Oceanic Particle distribution sources and sinks;
18	GEOSECS; JGOFS; GEOTRACES.
19 20	* This article is dedicated to the memory of Devendra Lal (1929-2012) who wrote a
21	seminal contribution to the study of "the oceanic microcosm of particles".
22	
23	Abstract
24	Particles determine the residence time of many dissolved elements in seawater. Although
25	a substantial number of field studies were conducted in the framework of major
26	oceanographic programs as GEOSECS and JGOFS, knowledge about particle dynamics
27	is still scarce. Moreover, the particulate trace metal behavior remains largely unknown.
28	The GEOSECS sampling strategy during the 1970's focused on large sections across
29	oceanic basins, where particles were collected by membrane filtration after Niskin bottle
30	sampling, biasing the sampling towards the small particle pool. Late in this period, the
31	first in situ pumps allowing large volume sampling were also developed. During the
32	1990's, JGOFS focused on the quantification of the "exported carbon flux" and its
33	seasonal variability in representative biogeochemical provinces of the ocean, mostly
34	using sediment trap deployments. Although scarce and discrete in time and space, these
35	pioneering studies allowed an understanding of the basic fate of marine particles. This
36	understanding improved considerably, especially when the analysis of oceanic tracers
37	such as natural radionuclides allowed the first quantification of processes such as
38	dissolved-particle exchange and particle settling velocities. Because the GEOTRACES

70

39	program emphasizes the importance of collecting, characterizing and analyzing marine
40	particles, this paper reflects our present understanding of the sources, fate and sinks of
41	oceanic particles at the early stages of the program.
42	
43	Introduction
44 45	The ocean contains 1.4×10^{18} cubic meters of water and holds approximately 10^{10} metric
46	tons of solid material in the form of suspended particles that are present at an average
47	concentration in the deep sea ranging from 5 to 20 µg per liter (Brewer <i>et al.</i> , 1976;
48	Bishop and Fleisher, 1987; Sherrell and Boyle, 1992). Although not abundant, particles
49	act as an essential regulator of ocean chemistry because they determine the residence
50	time of many dissolved elements in seawater (Lal, 1977; Turekian, 1977). Vertical and
51	horizontal distributions of many trace elements and their isotopes (TEIs) are clearly
52	influenced by particle formation, remineralization, and transport. Because of their
53	importance, numerous studies during the past 50 years have focused on characterizing
54	these marine particles. In the 1970's, the Geochemical Ocean Sections study (GEOSECS
55	Craig and Turekian, 1976) allowed a first description of the particle distribution in the
56	ocean, and mostly focused on suspended particles collected by filtration from Niskin-type
57	bottles. During those times, only a few pioneering studies attempting to characterize and
58	quantify particle fluxes were conducted (McCave, 1975; Honjo, 1976; Shanks and Trent,
59	1980). Nevertheless, these first results were invaluable in that i) they were the first
60	suggesting that vertical flux is dominated by rare large particles (McCave, 1975) and ii)
61	they guided the strategy of the Joint Global Ocean Flux Study (JGOFS) program (Fowler
62	and Knauer, 1986). However, laboratory and field technologies at that time were such
63	that measurements of TEIs in these particles with a good precision and resolution (spatial
64	as well as temporal) were difficult.
65	In the 1990's, the JGOFS program substantially increased our understanding of the
66	standing stock, vertical flux and fate of marine particles, with the focus largely on carbon
67	and associated nutrient cycles (Fasham et al., 2001). However, because of data scarcity
68	and the large variability of particle fluxes in time and space, the full characterization of

marine particle concentrations, flux, and composition was a difficult task, and remained

far from being achieved. The JGOFS era also suffered from a lack of methodologies for

/ [determining TEIs, which are extremely helpful for quantifying specific particle processes
72	in the water column. Although the analytical protocols for assessing some TEIs were
73	available and applied during some JGOFS research projects, they did not yet represent
74	the major research target. As a consequence, the global distribution of dissolved and
75	particulate TEIs is poorly known today. Because some TEIs are powerful tracers of
76	particle origin and processes (e.g. settling velocity, rates of dissolution, precipitation,
77	adsorption, and desorption) and some are essential micronutrients whose speciation in the
78	solid and dissolved phases is of prime importance for their bioavailability, there is an
79	urgent need to understand the global distribution of TEIs in the oceanic environment.
80	Filling this gap by investigating the sources, behavior and sinks of these TEIs is the main
31	goal of the GEOTRACES program (www.geotraces.org), which was developed following
32	the model of its "parent" program GEOSECS but with more emphasis on the collection,
83	observation, speciation and analysis of marine particles. As we enter the early stages of
84	the new GEOTRACES era, the present work reviews our understanding, informed by
85	GEOSECS and JGOFS, of the distribution of suspended and sinking marine particles of
86	both biogenic and abiogenic origin, as well as the role of these particles as regulators of
87	the marine biogeochemical cycles of TEIs. In addition to Anderson and Hayes'
88	introduction (this issue), this paper provides the historical context for this special issue
89	that proposes to browse the state of the art of our present knowledge on optically
90	characterizing (Boss et al., this issue), collecting (McDonnell et al., this issue), analyzing
91	(Lam et al., this issue) and modelling (Dutay et al., this issue; Jackson and Burd, this
92	issue) marine particles. The issue is concluded by Henderson and Marchal's comments
93	and perspectives.

1- The origin of marine particles

95 96 97

100

Marine particles have two main origins, as illustrated in Figure 1.

98 *Sources external to the marine system*: By means of erosion, continents bring particles 99 (natural or anthropogenic, mineral or organic) into the ocean. These are transported via

the atmosphere (winds, rains), rivers (sedimentary discharge), or by lateral transport from

101 continental margin sediments. Before extensive damming, the annual solid flux

discharged by rivers to the oceans was of the order of 19×10^{15} g (Peucker-Ehrenbrink,

103	2009), which is 50 times the atmospheric flux (Jickells <i>et al.</i> , 2005). Other particles are
104	extraterrestrial, such as micrometeorites (10 to 100 μm in size) or cosmic dust that would
105	represent a flux of between 7 to 14 X 109 g/y to the oceans (Johnson, 2001). Nano-
106	metric-sized (and highly magnetic) particles were also detected in the Greenland and
107	Antarctic ice caps and are identified as originating from atmospheric ablation of
108	meteorites and micrometeorites at high (~100 km) altitude (Lanci et al., 2004; 2007).
109	Finally, hydrothermal vents also are a significant "external" source of particles for the
110	deep ocean. Particles from hydrothermal vents precipitate within the plume, forming fine
111	grained sulfide and oxide minerals that may be distributed over large regions of the deep
112	ocean (Mottl and McConachy, 1990; Feely et al., 1996; Sherrell et al., 2000; Tagliabue et
113	al., 2010).
114	Sources internal to the marine system: A huge quantity of marine particles is produced by
115	biological activity. Photoautotrophic plankton assimilates dissolved species (C, N, P, Si,
116	trace metals) and uses solar energy to synthesize organic matter, and specific groups,
117	including microheterotrophs, also secrete skeletal parts consisting of calcite, aragonite,
118	opal, or celestite. The annual flux of material so produced represents $\sim 60 \times 10^{15}$ g/y of
119	organic carbon (Fasham et al., 2001). The magnitude of marine primary production is
120	similar to terrestrial primary production, but the standing stock of fixed organic carbon is
121	far less in the ocean than in terrestrial systems, resulting in much higher turnover rate of
122	carbon in the ocean. This high turnover rate has consequences for the cycling of TEIs
123	associated with this biogenic material. Other autotrophic organisms, such as nitrifiers, use
124	chemical energy, and are called chemolithotrophic (Griffith et al., 2012; Honjo et al.,
125	2012). These thrive throughout the oceanic water column and produce new biomass in-
126	situ. Autotrophic carbon fixation is the point of departure of the trophic chain whose life
127	and death cycle generates particles throughout the water column. Among the
128	heterotrophs, microzooplankton species, such as foraminifera, radiolarians, but also
129	larger multi-cellullar organisms such as salps and pteropods, represent a significant
130	portion of living biomass (Buitenhuis et al., 2013). Although less abundant than
131	phytoplanktonic organisms, they are important because of their role in packaging and
132	remineralization and for their potential as recorders, once incorporated in ocean
133	sediments, of past environmental conditions. In addition, diel vertical migration by

134	mesozooplankton may represent a significant pathway of particle redistribution in the
135	mesopelagic zone, between water depths of about 100 m and 1000 m (Steinberg et al.,
136	2008). Another source of particles in the upper water column is through spontaneous
137	aggregation of Dissolved Organic Matter (DOM) into larger particles, from the molecular
138	size up to a typical size of 4 μm , therefore becoming Particulate Organic Matter (POM).
139	These particles have been termed microgels (Verdugo, 2012). Barium sulfate, and
140	manganese and iron oxides and hydroxides are also known to precipitate within the water
141	column, incorporating other elements in the process, or scavenging trace elements by
142	adsorption or other particle surface phenomena (Krishnaswami et al., 1976a,b; Bishop
143	and Fleisher, 1987; Dehairs et al., 1990; Sherrell and Boyle, 1992; Paytan et al., 1993;
144	van Beek et al., 2007; van Beek et al., 2009).
145	Marine particles are often divided in 2 different types: small (micron-size) and slowly
146	sinking particles on one hand and large (> 50-100 micron-size) and rapidly sinking on the
147	other hand. The cut off is both poorly defined and somewhat arbitrary. However, it
148	corresponds to 2 modes of marine particle sampling: filtration on filters with (sub-)
149	micron size porosity for the small particles and collection in sediment trap and/or
150	filtration with large porosity for large particles. Hence, this operational definition is still
151	used in the GEOTRACES program.
152	
153	2- Small suspended particles and TEI behavior
154	
155	2-1 Oceanic distribution of suspended particles
156	
157	Small particles (0.2-53 μ m) constitute the bulk of the particle standing stock in the ocean.
158	In the upper 1000 m, particles < 53 µm represent on average ~80% of total suspended
159	particle mass (Bishop et al., 1977; Bishop et al., 1978; Bishop et al., 1980; Bishop et al.,
160	1985; Bishop <i>et al.</i> , 1986; Lam and Bishop, 2007; Bishop and Wood, 2008). Their
161	amount and their large surface areas propel them as active players in the solution-solid
162	exchanges that impact TEI distribution (Krishnaswami et al., 1976; Anderson et al.,
163	1983a,b; Bishop and Fleisher, 1987; Sherrell and Boyle, 1992; Jeandel et al., 1995; Roy-
164	Barman et al., 1996). The vertical distribution of particles is characterized by a surface

165	maximum sustained by primary production, which decreases very quickly in the upper
166	200 m and exponentially at greater depth (Figure 2). Some regions are also characterized
167	by strong intermediate (e.g., Iberian margin) and/or bottom (e.g., western boundary of the
168	Atlantic basin) nepheloid layers, resulting in profiles with surface and near-bottom
169	maxima and a clear-water minimum in the 2000 - 3000 m depth range as illustrated in
170	Figures 2 and 3 (Brewer et al., 1976; Biscaye and Eittreim, 1977).
171	Particles in the upper 1000 m, especially in open ocean areas, are produced internally in
172	the marine system and are composed primarily of biogenic materials: particulate organic
173	matter, CaCO ₃ , and biogenic silica. Particles in regions with high external inputs, such as
174	the North Atlantic and the Mediterranean Sea with their high dust deposition and high
175	sedimentary inputs, have a composition characterized by a higher fraction of lithogenic
176	material -which could reach 70% of the total mass (Roy-Barman et al., 2009)-
177	particularly at depths where biogenic matter is being remineralized (POM) or is
178	dissolving (biogenic silica or CaCO ₃). A relatively high fraction of mineral particles is
179	also found in benthic nepheloid layers, where surface sediment particles that are
180	relatively poor in biogenic components are resuspended into bottom waters (Figure 3;
181	Gardner et al., 1983).
182	Before the advent of the GEOTRACES program, full water column profiles of trace
183	metal and isotopic composition of suspended particles were measured in only a few
184	locations. The trace element composition (including Al, Mn, Fe, Co, Ni, Cu, Zn, Cd and
185	Pb) of suspended particles was measured at BATS in the Sargasso Sea (Sherrell and
186	Boyle, 1992), in the North Pacific subtropical gyre (Bruland et al., 1994), and off Point
187	Conception (CA) in the Northeast Pacific (Sherrell et al., 1998). The acetic acid leachable
188	and refractory fractions of particulate iron, manganese, and aluminum have been
189	measured in the North Pacific (Orians and Bruland, 1986; Landing and Bruland, 1987).
190	During the GEOSECS Atlantic cruises in the seventies, full water column data for a
191	whole suite of trace and minor elements were obtained by neutron activation of total
192	suspended matter (Ba, Ti, Sr, Mn, Mg, Cu, V, Al, Ca, La, Au, Hg, Cr, Sb, Sc, Fe, Zn, Co
193	Peter Brewer, unpublished results). These data are currently being compared to those
194	obtained as part of the early GEOTRACES cruises. Such quality controlled data will be
195	further stored in the GEOTRACES Data Center, under the label "historical data".

196	
197	2-2 Role of suspended particles in oceanic processes
198	
199	Once we understand what drives the dissolved/colloidal/particulate partitioning of a
200	tracer, this information can then be used in turn to trace oceanic processes. Non-
201	exhaustively, we can cite:
202	- Dissolved and particulate 230 Th and 231 Pa activity distributions provide an efficient tool
203	for estimating apparent particle settling velocities and therefore residence times in the
204	water column (Krishnaswami et al., 1976; Bacon and Anderson, 1982; Bacon et al.,
205	1985; Roy-Barman et al., 1996). The apparent settling velocity is the net effect of all
206	processes that are described in Figure 4. We acknowledge that reducing the particle
207	distribution in 2 categories only as represented in Figure 4 are simplified views of this
208	distribution, driven partly by sampling and analytical logistics. However, a two particle
209	class model captures two of the most important particle processes that are of interest here:
210	scavenging and sinking (see also McDonnell et al., this issue). The particle residence
211	times deduced from these radionuclide distributions can therefore be applied to other
212	poorly soluble TEIs.
213	- $\Delta^{14}C,\delta^{13}C$ and $\delta^{15}N$ distributions allow the identification of terrestrial versus marine
214	origin of organic matter, episodes of re-suspension of shelf or slope organic matter,
215	penetration of atmospheric nitrogen and carbon and/or oxidative processes (Williams et
216	al., 1992; Mollenhauer et al., 2003; Mollenhauer et al., 2005)
217	- Biologically driven barite precipitation in the surface or sub-surface waters provide a
218	good tool for surface productivity reconstruction, in the modern as well as in the past
219	ocean (Dehairs et al., 1991; Dehairs et al., 1992; Jeandel et al., 2000; Cardinal et al.,
220	2001; Jacquet et al., 2008; Sternberg et al., 2008; Paytan et al., 1993; van Beek and
221	Reyss, 2001; van Beek et al., 2002).
222	- Rare earth elements (REEs) and Nd isotopes trace the origin of suspended material as
223	well as dissolved-particle exchanges in the water column (Jeandel et al., 1995;
224	Tachikawa et al., 1999a; Kuss et al., 2001).
225	- Manganese and iron are redox sensitive and less soluble when oxidized. In the surface
226	waters, photochemistry can efficiently change the speciation of these tracers and

227	therefore their distributions. In the water column, co-precipitation and/or adsorption of
228	TEIs on Mn and Fe oxyhydroxides result in removal of elements such as Co, Cu, Ni, Zn,
229	Th but also REEs (Anderson et al., 1983a, b; Landing and Bruland, 1987; Sherrell and
230	Boyle, 1992; Moffett and Ho, 1996; Cardinal et al., 2001; Roy-Barman et al., 2009; Kuss
231	et al., 1999; Tachikawa et al., 1999b).
232	- Particle formation above submarine hydrothermal vents plays an important role in
233	modifying the gross flux from hydrothermal systems to the oceans. Approximately 50%
234	of the dissolved Fe released from a high-temperature vent is predicted to be precipitated
235	in the form of polymetallic sulfides in buoyant hydrothermal plumes within minutes of
236	emission from the seafloor (Rudnicki and Elderfield, 1993). The remaining Fe
237	precipitates more slowly, in the form of Fe-oxyhydroxides (Sherrell et al., 2000) which
238	can significantly impact the scavenging of trace elements and isotopes (oxyanions, Be, Y
239	REE, Th, Pa) from the water column (Michard et al., 1983; Lilley et al., 1993). This
240	hydrothermal scavenging can be so pronounced as to match the boundary scavenging
241	effects seen at high productivity ocean margins (German et al., 1997). Most prior works
242	assumed that hydrothermal plume particle formation is an inorganic process, but recent
243	studies have shown that significant concentrations of organic carbon are incorporated into
244	hydrothermal particles (Bennett et al., 2011; Toner et al., 2009) and further that the
245	formation of these particulate phases may be microbially mediated (Sylvan et al., 2012).
246 247	3- The role of sinking particles in TEI cycling
248	
249	Large particles (> 53 μm , under typical methodological size fractionation) make up most
250	of the vertical flux and therefore contribute to the sequestration of most elements in the
251	deep ocean. The size criterion for separating suspended and sinking particles is more an
252	operational definition than a biogeochemical one: small and dense particles (as fecal
253	pellets for example) can sink faster than large fluffy aggregates (McCave, 1975). Indeed,
254	in the ocean, particle distribution follows a continuous spectrum whose sinking rates do
255	not necessarily increase monotonically with size (McDonnell and Buesseler, 2010;
256	McDonnell et al, this issue).

257	There are two approaches to sampling sinking particles to study TEI cycling: 1) size-
258	fractionated filtration, which separates the particle pool into an operationally defined
259	"suspended" size class (e.g. $<53~\mu m)$ and a "sinking" size class (e.g. $>53~\mu m),$ and 2)
260	direct collection of sinking particles of various sizes in sediment traps (Honjo, 1978;
261	McDonnell et al., this issue). In the first approach, geochemists analyze the TEI contents
262	of the different fractions, providing "state variables" of the systems to the modelers (Lam
263	et al., this issue; Dutay et al., 2009; Dutay et al., this issue). Despite this crude and
264	operational separation of the particle pool, thorium isotope distribution studies have
265	nonetheless shown that small and large particles exchange with each other throughout the
266	water column, as well as with the dissolved phases. This has yielded the conceptual
267	model for particle dynamics first proposed by Bacon et al. (1985) and represented in
268	Figure 4.
269	In addition to thorium isotopes, measurements of the size-fractionated concentrations of
270	other TEIs such as manganese, neodymium and barium have also yielded insights into
271	particle aggregation and disaggregation processes (Bishop and Fleisher, 1987; Jeandel et
272	al., 1995; Bishop and Wood, 2008).
273	In the second approach, sinking particles collected from sediment traps are analyzed
274	directly. The majority of sediment trap studies have had as their goal a better
275	understanding of the biological pump. As such, sediment trap studies most frequently
276	report measurements of particulate organic carbon (POC) and particle mass, and often
277	also major particle phases such as CaCO ₃ , biogenic silica, and lithogenic material, but
278	TEI measurements are much more rare (Brewer et al., 1980).
279	Compilations of the major phase composition (POM, CaCO ₃ , biogenic Si, lithogenics) of
280	sinking particles from bottom-tethered sediment traps during the JGOFS era have been
281	published (Antia et al., 2001; Armstrong et al., 2002; François et al., 2002; Klaas and
282	Archer, 2002; Lutz et al., 2007; Honjo et al., 2008; Honjo et al., 2010) and show a wide
283	geographic range in the magnitude and efficiency of POC flux to depth. Analysis of a
284	compilation of >53µm POC, CaCO ₃ and biogenic Si concentrations also show wide
285	geographic and temporal range in the transfer of POC to depth (Lam et al., 2011).
286	Several studies have noted correlations between the fluxes of POC and CaCO ₃ in deep
287	sediment traps (> 1000 m) and have sparked numerous other studies as to the processes

288	behind this correlation. In contrast, the fraction of net primary production that is
289	exported from the euphotic zone is often correlated with the abundance of large
290	phytoplankton taxa, especially diatoms (Buesseler, 1991; Buesseler $\operatorname{\it et\ al.}$, 2007a; Guidi $\operatorname{\it et\ }$
291	al., 2009; Honda and Watanabe, 2010), illustrating that controls on shallow export flux
292	may be decoupled from controls on deep POC flux (François et al., 2002; Lomas et al.,
293	2010). Several time-series stations such as Bermuda Atlantic Time Series Study
294	(http://bats.bios.edu), Hawaii Ocean Time series in the Pacific
295	(http://hahana.soest.hawaii.edu/hot/hot-dogs/interface.html), DYFAMED time series in
296	the Mediterranean Sea (http://www.eurosites.info/dyfamed.php ; Miquel et al., 2011) and
297	ESTOC time series north of the Canary Islands (Neuer et al., 1997; Patsch et al., 2002),
298	as well as dedicated programs such as EUMELI (Bory et al., 2001), VERTIGO
299	(Buesseler et al., 2007a; Lamborg et al., 2008), and MedFlux (Lee et al., 2009) have also
300	shown wide ranging temporal variability in particle flux and composition. Even though
301	there are relatively few studies that have measured TEIs directly on sinking particles
302	(Huang and Conte, 2009), the wide geographic and temporal variability in particle
303	sinking flux implies that the sinks of particle-reactive TEIs will experience similar
304	variability (Antia et al., 2001; Scholten et al., 2001).
305	At some of the sites listed above and elsewhere, TEIs were measured in the trapped
306	material too. Most of these works used U-Th series to reconstruct or calibrate POC
307	fluxes (Cochran et al., 1993; Sarin et al., 2000; Roy-Barman et al., 2005; Stewart et al.,
308	2007; Trull et al., 2008; Cochran et al., 2009; Roy-Barman et al., 2009). Others used
309	stable ¹³ C and ¹⁵ N or barite to differentiate biogeochemical cycles (Jeandel <i>et al.</i> , 2000;
310	Lourey et al., 2004; Casciotti et al., 2008), and a few have used REE and radiogenic
311	isotope data to trace the origin of the particles (Jeandel et al., 1995; Tachikawa et al.,
312	1997; Chavagnac et al., 2008). The pioneer VERTEX program allowed investigations of
313	the major and trace element composition of sinking particles from the Pacific (Knauer et
314	al., 1979; Fowler and Knauer, 1986) but the measurement of contamination-prone TEIs
315	in sediment trap samples has only become more common recently (Kuss and Kremling,
316	1999; Frew et al., 2006; Lamborg et al., 2008; Bowie et al., 2009; Ho et al., 2010; Ho et
317	al., 2011). When studying fluxes of trace elements collected by sediment traps, one must

318	be aware of the tendency for TEIs to dissolve into supernatant solutions (Kumar et al.,
319	1996).
320	
321	4- Partition coefficients of trace elements: from the ocean to the models
322	
323	The chemical behavior of particle-reactive metals such as Th, Pa, Nd and other REE is
324	often characterized by a partition coefficient K_d between seawater and marine particles
325	defined as:
	mass of particulate tracer per mass of particles
326	$K_d = $
327	
328	To first order, K_d for a given element is expected to depend of the chemical bulk
329	composition of the marine particles. Several approaches have been used to determine the
330	relationship between K_d and particle composition.
331	For elements having isotopes produced in situ such as Th and Pa, two methods have been
332	used: 1) correlation of isotopes produced in situ with the main components of sinking
333	marine particles collected by sediment traps, and 2) sorption experiments using natural or
334	artificial seawater and particles. Sediment trap analyses have shown correlations between
335	radioisotopes and inorganic phases, but fortuitous correlations between components have
336	produced conflicting interpretations (Chase et al., 2002; Luo and Ku, 2004; Roy-Barman
337	et al., 2005; Roy-Barman et al., 2009). Some of these fortuitous correlations could be
338	avoided by directly studying small filtered particles, because they dominate the solid
339	surface area per volume and thus are more likely to adsorb tracers from seawater. This
340	would require that the total mass and the major components of filtered particles be
341	determined (Lam et al., this issue). While focus has mainly been on the impact of major
342	components on K_d (see references above), minor phases such as Mn oxides could play a
343	significant role in the scavenging of Th (Roy-Barman et al., 2009) and Pa (Anderson et
344	al., 1983a,b) in deep waters. Sorption experiments have shown a relatively low affinity of
345	Th for inorganic phases and a high affinity for organic compounds (Santschi et al., 2006).
346	These results are consistent with ²³⁴ Th scavenging in shallow waters, but they fail to

- explain the correlations between ²³⁰Th and inorganic phases (carbonate, lithogenic or Mn oxides, see previous paragraph) observed in sediment trap data.
- 349 For elements derived from continental erosion, such as Neodymium (Nd) or Hafnium
- 350 (Hf), with no in situ sources of isotopes, the authigenic fraction of the elements in
- particles can be determined by subtraction of the lithogenic fraction (Kuss et al., 2001,
- 352 Garcia-Solsona et al., 2014), chemical leaching or isotopic balance (Tachikawa et al.,
- 353 1999b; Tachikawa *et al.*, 2004). These methods do not necessarily give consistent results.
- 354 In the case of leaching, the selective dissolution of authigenic phases, without
- 355 contamination from other phases, remains to be demonstrated. More importantly, re-
- 356 adsorption of leached TEIs to refractory phases, and the incomplete removal of colloidal
- 357 materials mobilized during leaching procedures, can confound the interpretation of the
- original carrier of TEIs (Lam et al., this issue). Consequently, an approach based on
- 359 isotopic mass balance or on the statistical correlation among end member particulate
- 360 phases is preferred.
- 361 Recently, physical separations have brought new insights by partially isolating and
- analysis enriching some carriers (Kretschmer et al., 2010; 2011). The development of the analysis
- 363 of individual particles allows the unambiguous determination of some carriers (Roy-
- Barman, pers. comm.). Particle observation should be systematically coupled to particle
- analysis (Lam et al., this issue). Besides methodological aspects, fundamental aspects of
- the tracer's behavior must be addressed:
- Possible disequilibrium between particles and seawater (Coppola *et al.*, 2006;
- 368 Venchiarutti *et al.*, 2011).
- The role of the colloidal phase for both organic and inorganic compounds.
- The impact of mineralization on the particle composition and K_d .
- 371 The present uncertainties on the K_d of Pa, Th and Nd have direct impacts on our
- 372 understanding of the distribution of these tracers in the ocean. For example, several
- 373 models "successfully" represent the Nd concentration and isotopic composition in the
- ocean but in fact use different particle models (particle mineralization or boundary
- 375 exchange) and K_d (equilibrium versus adsorption-desorption) that are adjusted to
- eventually match the data (synthesis in Rempfer et al., 2011, 2012; Arsouze et al., 2009).

377	More dissolved and particle data from representative oceanic regimes are required to
378	constrain models, one of the main missions of GEOTRACES.
379	
380	
381	5- Benthic and Intermediate Nepheloid Layers and their impacts on TEI
382	distribution
383	
384	Benthic Nepheloid Layers (BNLs) occur wherever bottom currents interact with the
385	(deep) sea floor (Biscaye and Eittreim, 1977, McCave et al., 2001). In the discussion of
386	the effect of a BNL on the distribution of TEIs, we can distinguish the effects at two
387	spatial scales: (i) the effects on a local scale, like those related to currents characterized
388	by high level of eddy kinetic energy and to currents over seamounts (Turnewitsch et al.,
389	2008) and (ii) the effects on a larger scale related to large-scale abyssal circulation.
390	
391	5-1 Local re-suspension
392	
393	The generation of a BNL and the distribution and size spectra of particles have been
394	described by McCave (1984, 1986, 2001). Vertical mixing in bottom layers was studied
395	during GEOSECS with ²²² Rn (Sarmiento et al., 1976). The vertical extent of BNLs is
396	enhanced by the detachment of bottom mixed layers (Armi and D'Asaro, 1980). If surface
397	sediments are in adsorption equilibrium with the bottom water, re-suspension need not
398	change this equilibrium. However, there are cases in which interaction between re-
399	suspension and bioturbation can change the distribution of dissolved components in the
400	BNL relative to the water layer just above the BNL: 1) if the tracer decays within the
401	bioturbated zone, or 2) if K_d changes as a result of diagenetic changes (e.g. MnO_2
402	enrichment) or particle dynamics like aggregation-disaggregation (Rutgers van der Loeff
403	and Boudreau, 1997). There is no indication that the particle concentration has an effect
404	on the K_d in the BNL (Honeyman <i>et al.</i> , 1988).
405	For short-lived radionuclides like ²³⁴ Th and ²¹⁰ Pb, condition (1) above is clearly met.
406	Profiles of dissolved ²³⁴ Th provide clear evidence for enhanced removal of dissolved
407	TEIs from bottom waters in the presence of nepheloid layers (Bacon and Rutgers van der

408	Loeff, 1989). Enhanced removal of particle-reactive TEIs near the sea bed has been
409	evident since GEOSECS-era studies of ²¹⁰ Pb (Craig et al., 1973), and the concept of
410	bottom scavenging has been reintroduced recently through the study of ²³⁰ Th (Okubo et
411	al., 2012). However, developing a direct link between sediment re-suspension and
412	enhanced removal of TEIs near the sea bed will require joint research on particles as well
413	as on the distribution of dissolved TEIs.
414	
415	5-2 Long-range transport in the BNL
416	
417	Strong bottom currents occur along the western boundaries of the ocean basins (Warren,
418	1981), and deep wind and buoyancy-driven currents such as the Antarctic Circumpolar
419	Current can reach abyssal depths (e.g. in the Drake Passage; Renault et al., 2011).
420	Through re-suspension or, rather, selective deposition, these currents can maintain high
421	loads of suspended sediments. In the BNL, particles may be transported over large
422	distances as shown for clay minerals (Griffin et al., 1968; Petschik et al., 1996;
423	Diekmann et al., 2004). This means that particles are not only redistributed locally
424	(winnowing and focusing) but also transported between areas with widely different local
425	sediment compositions.
426	
427	5-3 TEI fractionation
428	
429	The composition of material suspended in the BNL is different from that in the clear
430	water above it. Grain size fractionation has been described in detail by the studies of I.
431	McCave (Mc Cave, 2001). The possible effect of grain size fractionation on the isotopic
432	composition of deposited sediments was studied by Kretschmer et al. (2010; 2011) who
433	found that :
434	• ²³⁰ Th, ²³¹ Pa and ¹⁰ Be adsorb preferentially onto the smallest grain sizes
435	• ²³¹ Pa/ ²³⁰ Th and ¹⁰ Be/ ²³⁰ Th ratios are enhanced in a slowly settling pure opal
436	fraction
437	• Settling rate fractionation during sediment focusing causes an increase in the bulk
438	230 Th concentration and in the 231 Pa/ 230 Th ratio.

5-4 Intermediate Nepheloid Layers

There are many examples of Intermediate Nepheloid Layers (INLs) caused by the detachment of a BNL at the shelf break and other breaks in slope where internal tidal energy is focused, followed by offshore advection (McCave *et al.*, 2001). It would be important to study the link between the dispersal of particulate (INLs) and dissolved tracer signals from the shelf (e.g. Fe and Mn releases, ²¹⁰Pb removal, Nd isotope exchange (Sherrell *et al.*, 1998; Lacan and Jeandel, 2005; Lam and Bishop, 2008). The particulate signal disappears by sinking and aggregate formation (Clegg and Whitfield, 1990, 1991; Karakas *et al.*, 2006; 2009). The time scale of distribution of dissolved shelf inputs can be studied with short lived Ra isotopes and ²²⁸Th.

6- "Historical" understanding of particle dynamics and perspectives

Despite its fundamental role in controlling the chemical composition of the ocean (Goldberg, 1954; Turekian, 1977) and the different cruises conducted in the 70s and 80s, the "oceanic microcosm of particles"-as christened by Lal (1977) – is far from being understood yet. In addition, sampling strategies and scientific focus differed between the GEOSECS and JGOFS programs. GEOSECS carried out large sections across the oceanic basins, where particles were collected by membrane filtration after bottle sampling, biasing the sampling towards the small particle pool. Analyses mostly informed us about the distribution of particle concentrations (mass/L), their major element compositions, as well as a few tracers and selected morphological and qualitative composition descriptions, thanks to the first Scanning Electron Microscopy (SEM) analyses. Subsequent box and one-dimensional (vertical) models described the different fluxes exchanged in and out the oceanic system as well as along the water column. These pioneering efforts led to the emergence of the fundamental notion of "reversible scavenging" (Brewer *et al.*, 1976; Krishnaswami *et al.*, 1976; Lal, 1980; Nozaki *et al.*, 1981; Bacon and Anderson, 1982; Anderson *et al.*, 1983a). They also highlighted the role

469	of "particle-rich" continental margins on the distribution of ocean tracers (Anderson and
470	Henderson, 2003; Jeandel et al., 2011).
471	JGOFS identified representative biogeochemical provinces of the ocean, where most of
472	the work was dedicated to the quantification of the "exported carbon flux" and its
473	seasonal variability (Fasham et al., 2001). Except for rare studies just prior to JGOFS
474	that conducted small particle sampling and deployed the first in situ pumps allowing
475	large volume filtration (Krishnaswami et al., 1976; Bacon and Anderson, 1982; Bishop et
476	al., 1985; Rutgers van der Loeff and Berger, 1993; Jeandel et al., 1995; Tachikawa et al.,
477	1999b), most of the field work conducted during JGOFS deployed moored and (or)
478	drifting sediment traps. TEIs were barely measured, except perhaps ²³⁴ Th and ²³⁰ Th
479	isotopes, which were recognized as useful for POC flux calibration and quantification.
480	Resulting models describe the exported carbon flux as it was related to the surface
481	nutrient distribution using 1D and 3D models coupling physics and biology (Bopp et al.,
482	2002). Most of the particle models developed in the late 80s and in the 90s are
483	mechanistic and abiotic (Dutay et al., this issue; Burd and Jackson, 2009; Jackson and
484	Burd, this issue). Early models coupled particle dynamics to ocean circulation in an
485	OGCM, although processes describing the particle behavior in such 3D dynamical
486	models remained one-dimensional (Henderson and Maier-Reimer, 2002; Gehlen et al.,
487	2003; Gehlen et al., 2006; Arsouze et al., 2009; Dutay et al., 2009; Rempfer et al., 2011).
488	
489	Conclusion
490	
491	At the beginning of the GEOTRACES program, we have to admit that our collective
492	understanding of the processes governing the solution-particle exchange has made little
493	progress in the preceding two decades. Key questions remain:
494	i) What are the affinities of the various TEIs for the different particulate phases
495	(Rutgers van der Loeff and Berger, 1993; Chase et al., 2002; Anderson and Henderson,
496	2003; Geibert and Usbeck, 2004; Luo and Ku, 2004; Roy-Barman et al., 2005; Santschi
497	et al., 2006; Roy-Barman et al., 2009)?

498 ii) What is the role of remineralization in the mesopelagic zone (Dehairs et al., 1995; 499 Dehairs et al., 1997; Frew et al., 2006; Boyd and Trull, 2007; Buesseler et al., 2007b; 500 Dehairs et al., 2008)? 501 iii) What is the impact of sediment diagenesis on the composition of resuspended 502 particles and on their ability to scavenge additional TEIs, despite having previously 503 equilibrated with dissolved species in the water column (Kretschmer et al., 2010; 504 Kretschmer et al., 2011)? 505 iv) What are the roles of the BNLs and INLs on the boundary scavenging and boundary 506 exchange processes (Bacon et al., 1988; Roy-Barman et al., 2005; Roy-Barman et al., 507 2009)? 508 v) What is the importance of other surface processes like chemoautotrophy as a source of 509 particles in the deep ocean (Honjo et al., 2012)? 510 Answers to these questions can be provided by the GEOTRACES program with the implementation of a comprehensive sampling and analytical strategies (pumps, optics, 511 512 observations and analysis of particles, see McDonnell et al., this issue; Boss et al., this 513 issue, Lam et al., this issue...), designed to elucidate the role of particles as agents of 514 supply and removal of TEIs in the ocean. There is an urgent need for re-focusing on 515 discrete particle composition, speciation and morphologies. 516 517 Acknowledgements 518 This paper arose from a workshop that was co-sponsored by ESF COST Action ES0801, 519 "The ocean chemistry of bioactive trace elements and paleoproxies". Additional support 520 for that workshop came from SCOR, through support to SCOR from the U.S. National 521 Science Foundation (Grant OCE- 0938349 and OCE-1243377). Support for PJL from 522 U.S. NSF grant OCE-0963026. The authors deeply thank the AE and two anonymous 523 reviewers for their fruitful comments. 524

References

525526

544

545

546

556557

558

559

560

561562

- Anderson, R. F., Bacon, M. P., Brewer, P. G., 1983a. Removal of ²³⁰Th and ²³¹Pa at ocean margins. Earth and Planetary Science Letters 66(1-3), 73-90.
- Anderson, R. F., Bacon, M. P., Brewer, P. G., 1983b. Removal of ²³⁰Th and ²³¹Pa from the open ocean. Earth and Planetary Science Letters 62(1), 7-23.
- Anderson, R. F., Henderson, G., 2003. The U-series toolbox for paleoceanography, Reviews in Mineralogy and Geochemistry 52, 493-531.
- Antia, A. N., Koeve, W., Fischer, G., Blanz, T., Schulz-Bull, D., Scholten, J., Neuer, S., Kremling, K., Kuss, J., Peinert, R., Hebbeln, D., Bathmann, U., Conte, M., Fehner, U., Zeitzschel, B., 2001. Basin-wide particulate carbon flux in the Atlantic Ocean: Regional export patterns and potential for atmospheric CO₂ sequestration. Global Biogeochemical Cycles 15(4), 845-862.
- Armi, L., D'Asaro, E., 1980. Flow structures in the benthic ocean. Journal of Geophysical Research 85, 469-484.
- Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S., Wakeham, S. G., 2002. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Research Part II-Topical Studies in Oceanography 49 (1-3), 219-236.
 - Arsouze, T., Dutay, J. C., Lacan, F., Jeandel, C., 2009. Reconstructing the Nd oceanic cycle using a coupled dynamical biogeochemical model. Biogeosciences 6 (12), 2829-2846.
- Bacon, M. P., Anderson, R. F., 1982. Distribution of Thorium Isotopes between dissolved and particulate forms in the deep-sea. Journal of Geophysical Research-Oceans and Atmospheres 87(NC3), 2045-2056.
- Bacon, M. P., Belastock, R. A., Tecotzky, M., Turekian, K. K., Spencer, D. W., 1988.
 ²¹⁰Pb and ²¹⁰Po in ocean water profiles of the continental-shelf and slope south of
 New-England. Continental Shelf Research 8 (5-7), 841-853.
- Bacon, M. P., Huh, C.-H., Fleer, A. P., Deuser, W. G., 1985. Seasonality in the flux of natural radionuclides and plutonium in the deep Sargasso Sea. Deep Sea Research 32, 273-286.
 - Bacon, M. P., Rutgers van der Loeff, M. M., 1989. Removal of ²³⁴Th by scavenging in the bottom nepheloid layer of the ocean. Earth and Planetary Science Letters 92, 157-164.
 - Bennett, S. A., Statham, P. J., Green, D. R. H., Le Bris, N., McDermott, J. M., Prado, F., Rouxel, O. J., Von Damm, K., German, C. R., 2011. Dissolved and particulate organic carbon in hydrothermal plumes from the East Pacific Rise, 9 degrees 50 ' N. Deep-Sea Research Part I-Oceanographic Research Papers 58(9), 922-931.
- Biscaye, P. E., Eittreim, S. L., 1977. Suspended particulate loads and transport in the nepheloid layer of the abyssal Atlantic Ocean. Marine Geology 23, 155-172.
- Bishop, J.K.B., Collier, R.W., Kettens, D.R., Edmond, J.M., 1980. The Chemistry,
 Biology, and Vertical Flux of Particulate Matter from the Upper 1500m of the
 Panama Basin. Deep-Sea Research Part a-Oceanographic Research Papers, 27,
 615-640.

584

585

586 587

588

597

598 599

600

601

602

603 604

- Bishop, J.K.B., Edmond, J.M., Ketten, D.R., Bacon, M.P., Silker, W.B., 1977. Chemistry,
 Biology, and Vertical Flux of Particulate Matter from Upper 400 m of Equatorial
 Atlantic Ocean. Deep-Sea Research, 24, 511-548.
- Bishop, J. K. B., Fleisher, M. Q., 1987. Particulate manganese dynamics in the Gulf
 Stream warm-core rings and surrounding waters of the N.W. Atlantic.
 Geochimica et Cosmochimica Acta 51, 2807-2825.
- 576 Bishop, J.K.B., Ketten, D.R., Edmond, J.M., 1978. Chemistry, Biology and Vertical Flux 577 of Particulate Matter from the Upper 400 m of the Cape Basin in the Southeast 578 Atlantic Ocean. Deep-Sea Research, 25, 1121-1161.
- Bishop, J. K. B., Schupack, D., Sherrell, R. M., Conte, M. H., 1985. A Multiple Unit
 Large Volume in-situ Filtration System (MULVFS) for sampling oceanic
 particulate matter in mesoscale environments. In: Mapping strategies in Chemical
 Oceanography, ed. A. Zirino, 155-175.
 - Bishop, J.K.B., Stepien, J.C., Wiebe, P.H., 1986. Particulate Matter Distributions, Chemistry and Flux in the Panama Basin - Response to Environmental Forcing. Progress in Oceanography, 17, 1-59.
 - Bishop, J. K. B., Wood, T. J., 2008. Particulate matter chemistry and dynamics in the twilight zone at VERTIGO ALOHA and K2 sites. Deep Sea Research Part I: Oceanographic Research Papers 55, 1684-1706.
- Bopp, L., Le Quéré, C., Heimann, M., Manning, A. C., Monfray, P., 2002. Climate induced oceanic oxygen fluxes: Implications for the contemporary carbon budget.
 Global Biogeochemical Cycles 16(2), 6-1-6-13.
- Bory, A., Jeandel, C., Leblond, N., Vangriesheim, A., Khripounoff, A., Beaufort, L.,
 Rabouille, C., Nicolas, E., Tachikawa, K., Etcheber, H., Buat-Ménard, P., 2001.
 Downward particle fluxes within different productivity regimes off the
 Mauritanian upwelling zone (EUMELI program). Deep-Sea Research Part IOceanographic Research Papers 48(10), 2251-2282.
 - Boss E., Guidi, L., Richardson, M.J., Stemmann, L., Gardner, W., Bishop, J.K.B, Anderson, R.F. and Sherrell, R. This issue, Optical techniques for in-situ characterization of particles pertinent 1 to GEOTRACES. Progress in Oceanography.
 - Bowie, A. R., Lannuzel, D., Remenyi, T. A., Wagener, T., Lam, P. J., Boyd, P. W., Guieu, C., Townsend, A. T., Trull, T. W., 2009. Biogeochemical iron budgets of the Southern Ocean south of Australia: Decoupling of iron and nutrient cycles in the subantarctic zone by the summertime supply. Global Biogeochemical Cycles 23, GB4034.
- Boyd, P. W., Trull, T. W., 2007. Understanding the export of biogenic particles in oceanic waters: Is there consensus? Progress in Oceanography 72(4), 276-312.
- Brewer, P. G., Spencer, D. W., Biscaye, P. E., Hanley, A., Sachs, P. L., Smith, C. L.,
 Kadar, S., Fredericks, J., 1976. The distribution of particulate matter in the
 Atlantic Ocean. Earth and Planetary Science Letters 32, 393-402.
- Brewer, P.W., Nozaki Y., Spencer, D.W., and Fleer, P.A, 1980. Sediment trap experiments in the deep North Atlantic: isotopic and elemental fluxes. Journal of Marine Research 38, 703-728.
- Bruland, K. W., Orians, K. J., Cowen, J. P., 1994. Reactive trace metals in the stratified central North Pacific. Geochimica et Cosmochimica Acta 58, 3171-3182.

- Buesseler, K. O., 1991. Do upper-ocean sediment traps provide an accurate record of particle flux? Nature 353, 420-423.
- Buesseler, K. O., Antia, A. N., Chen, M., Fowler, S.W., Gardner, W.D., Gustafsson, O.,
 Harada, K., Michaels, A.F., Rutgers van der Loeff, M.M., Sarin, M., Steinberg, D.
 K., Trull, T.W., 2007a. An assessment of the use of sediment traps for estimating
- upper ocean particle fluxes. Journal of Marine Research 65(3), 345-416.
- Buesseler, K. O., Lamborg, C. H., Boyd, P. W., Lam, P.J., Trull, T.W., Bidigare, R.R.,
 Bishop, J. K.B., Casciotti, K.L., Dehairs, F., Elskens, M., Honda, M., Karl, D. M.,
- Siegel, D.A., Silver, M. W., Steinberg, D. K., Valdes, J., Van Mooy, B., Wilson,
- S., 2007b. Revisiting carbon flux through the ocean's twilight zone. Science 316, 567-570.
- Buitenhuis, E. T., Vogt, M., Moriarty, R., Bednaršek, N., Doney, S. C., Leblanc, K., Le
 Quéré, C., Luo, Y. W., O'Brien, C., O'Brien, T., Peloquin, J., Schiebel, R., Swan,
 C., 2013. MAREDAT: towards a world atlas of MARine Ecosystem DATa. Earth
 System Science Data 5, 227-239.
- Burd, A. and Jackson, G., 2009. Particle aggregation, Annual Review of Marine Science 1, 65-90, DOI: 10.116/annurev.marine.010908.163904.
- Cardinal, D., Dehairs, F., Cattaldo, T., André, L., 2001. Geochemistry of suspended
 particles in the Subantarctic and Polar Frontal Zones south of Australia:
 Constraints on export and advection processes. Journal of Geophysical Research-
- 636 Oceans 106(C12), 31637-31656.
- Casciotti, K. L., Trull, T. W., Glover, D.M., Davies, D., 2008. Constraints on nitrogen
 cycling at the subtropical North Pacific Station ALOHA from isotopic
 measurements of nitrate and particulate nitrogen. Deep-Sea Research Part II Topical Studies in Oceanography 55(14-15), 1661-1672.
- 641 Chase, Z., Anderson, R. F., Fleisher, M. Q., Kubik, P. W., 2002. The influence of particle 642 composition and particle flux on scavenging of Th, Pa and Be in the ocean. Earth 643 and Planetary Science Letters 204(1-2), 215-229.
- Chavagnac, V., Lair, M., Milton, J. A., Lloyd, A., Croudace, I. W., Palmer, M. R., Green,
 D. R. H., Cherkashev, G. A., 2008. Tracing dust input to the Mid-Atlantic Ridge
 between 14 degrees 45 'N and 36 degrees 14 'N: Geochemical and Sr isotope
 study. Marine Geology 247(3-4), 208-225.
- 648 Clegg, S. L., Whitfield M., 1990. A generalized model for the scavenging of trace metals 649 in the open ocean, I, Particle cycling. Deep Sea Research 37, 809-832, 1990.
- 650 Clegg, S. L., Whitfield M., 1991. A generalized model for the scavenging of trace metals 651 in the open ocean, II, Thorium scavenging. Deep-Sea Research 38, 91-120.
- Cochran, J. K., Buesseler, K. O., Bacon, M. P., Livingston, H. D., 1993. Thorium
 isotopes as indicators of particle dynamics in the upper ocean: results from the
 JGOFS North Atlantic Bloom Experiment. Deep Sea Research Part I:
 Oceanographic Research Papers 40, 1569-1595.
- Cochran, J. K., Miquel, J. C., Armstrong, R., Fowler, S. W., Masqué, P., Gasser, B.,
 Hirschberg, D., Szlosek, J., Baena, A., Verdeny, E., Stewart, G. M., 2009. Time-
- series measurements of ²³⁴Th in water column and sediment trap samples from the
- northwestern Mediterranean Sea. Deep-Sea Research Part II-Topical Studies in
- 660 Oceanography 56(18), 1487-1501.

688

- Coppola, L., Roy-Barman, M., Mulsow, S., Povinec, P., Jeandel, C., 2006. Thorium
 isotopes as tracers of particle dynamics and deep water circulation in the Indian
 sector of the Southern Ocean (ANTARES IV). Marine Chemistry 100(3-4), 299 313.
- 665 Craig, H., Krishnaswami, S., Somayajulu, B.L.K., 1973. ²¹⁰Pb ²²⁶Ra radioactive disequilibrium in the deep-sea. Earth and Planetary Science Letters 17, 295-305.
- 667 Craig, H., Turekian, K. K., 1976. The GEOSECS program 1973-1976. Earth and Planetary Science Letters 32, 217.
- Dehairs, F., Baeyens, W., Goeyens, L., 1992. Accumulation of suspended barite at mesopelagic depths and export production in the Southern Ocean. Science 258, 1332-1335.
- Dehairs, F., Goeyens, L., Strootbans, N., Bernard, P., Goyet, C., Poisson, A., Chesselet,
 R., 1990. On suspended barite and the oxygen minimum in the Southern Ocean.
 Global Biogeochemical Cycles 4, 85-102.
- Dehairs, F., Jacquet, S., Savoye, N., Van Mooy, B. A. S., Buesseler, K. O., Bishop, J. K. B., Lamborg, C. H., Elskens, M., Baeyens, W., Boyd, P. W., Casciotti, K. L., Monnin, C., 2008. Barium in twilight zone suspended matter as a potential proxy for particulate organic carbon remineralization: Results for the North Pacific. Deep-Sea Research Part II-Topical Studies in Oceanography 55(14-15), 1673-1683.
- Dehairs, F., Jeandel, C., Miquel, J-C., Shopova, D., Ménard, S., Maguet, D., 1995.
 Seasonal evolution of export production and mesopelagic organic matter
 mineralization at station KERFIX in the Southern Ocean. In Carbon Fluxes and
 Dynamic Processes in the Southern Ocean: Present and Past, Southern OceanJGOFS International Symposium., Brest (Fr), 28-31 August 1995.
 - Dehairs, F., Shopova, D., Ober, S., Veth, C., Goeyens, L., 1997. Particulate barium stocks and oxygen consumption in the Southern Ocean mesopelagic water column during spring and early summer: Relationship with export production. Deep-Sea Research Part II-Topical Studies in Oceanography 44, 497-516.
- Dehairs, F., Stroobants, N., Goeyens, L., 1991. Suspended barite as a tracer of biological activity in the Southern Ocean. Marine Chemistry 35, 399-410.
- Diekmann, B., Fütterer, D. K., Grobe, H., Hillenbrand, C.-D., Kuhn, G., Michels, K.,
 Petschik, R., Pirrung, M., 2004. Terrigenous sediment supply in the polar to
 temperate South Atlantic: land-ocean links of environmental changes during the
 late Quaternary. in: Wefer, G., Mulitza, S., Ratmeyer, V. (Eds.), The South
 Atlantic during the Late Quaternary: Reconstruction of Material Budget and
 Current Systems. Springer, Berlin, Heidelberg. Springer, Berlin, Heidelberg, pp.
 375-399.
- Dutay, J. C., Lacan, F., Roy-Barman, M., Bopp, L., 2009. Influence of particle size and type on ²³¹Pa and ²³⁰Th simulation with a global coupled biogeochemical-ocean general circulation model: A first approach. Geochemistry Geophysics Geosystems 10, Q01011.
- Dutay, J-C., Tagliabue, A., Kriest, I., van Hulten, M.M.P., this issue. Large scale modelling of oceanic trace elements distribution. Progress in Oceanography.
- Fasham, M. J. R., Balino, B. M., Bowles, M. C., Anderson, R.F., Archer, D., Bathmann, U., Boyd, P., Buesseler, K., Burkill, P., Bychkov, A., Carlson, C., Chen, C. T. A.,

726

727

728

729

730

731

732

733

734

735

739

740

741

742

743

- Doney, S., Ducklow, H., Emerson, S., Feely, R., Feldman, G., Garçon, V.,
- Hansell, D., Hanson, R., Harrison, P., Honjo, S., Jeandel, C., Karl, D., Le Borgne,
- R., Liu, K. K., Lochte, K., Louanchi, F., Lowry, R., Michaels, A., Monfray, P.,
- Murray, J., Oschlies, A., Platt, T., Priddle, J., Quinones, R., Ruiz-Pino, D., Saino,
- 711 T., Sakshaug, E., Shimmield, G., Smith, S., Smith, W., Takahashi, T., Treguer, P.,
- Wallace, D., Wanninkhof, R., Watson, A., Willebrand, J., Wong, C. S., 2001. A
- new vision of ocean biogeochemistry after a decade of the Joint Global Ocean
- 714 Flux Study (JGOFS). Ambio, 4-31.
- Feely, R. A., Baker, E. T., Marumo, K., Urabe, T., Ishibashi, J., Gendron, J., Lebon, G.
 T., Okamura, K., 1996. Hydrothermal plume particles and dissolved phosphate
 over the superfast-spreading southern East Pacific Rise. Geochimica et
 Cosmochimica Acta 60, 2297-2323.
- Fowler, S. W., Knauer, G. A., 1986. Role of large particles in the transport of elements
 and organic compound through the oceanic water column. Progress in
 Oceanography 16, 147-194.
- François, R., Honjo, S., Krishfield, R., Manganini, S. J., 2002. Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean. Global Biogeochemical Cycles 16, 1087-1106.
 - Frew, R. D., Hutchins, D. A., Nodder, S., Sanudo-Wilhelmy, S., Tovar-Sanchez, A., Leblanc, K., Hare, C. E., Boyd, P. W., 2006. Particulate iron dynamics during FeCycle in subantarctic waters southeast of New Zealand. Global Biogeochemical Cycles 20, GB1S93.
 - Garcia Solsona E., Jeandel C., Labatut M., Lacan F. and Vance D., 2014. Rare Earth Elements and Nd isotopes tracing water mass mixing and particle-seawater interactions in the SE Atlantic, Geochimica et Cosmochimica Acta 125, 351–372, http://dx.doi.org/10.1016/j.gca.2013.10.009.
 - Gardner, W.D., Richardson, M.J., Hinga, K.R., Biscaye, P.E., 1983. Resuspension measured with sediment traps in a high-energy environment. Earth and Planetary Science Letters, 66, 262-278, http://dx.doi.org/10.1016/0012-821X(83)90140-1.
- Gehlen, M., Bopp, L., Ernprin, N., Aumont, O., Heinze, C., Raguencau, O., 2006.
 Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model. Biogeosciences 3, 521-537.
 - Gehlen, M., Heinze, C., Maier-Reimer, E., Measures, C. I., 2003. Coupled Al-Si geochemistry in an ocean general circulation model: A tool for the validation of oceanic dust deposition fields? Global Biogeochemical Cycles 17, GB1028.
 - Geibert, W., Usbeck, R., 2004. Adsorption of thorium and protactinium onto different particle types: Experimental findings. Geochimica et Cosmochimica Acta 68, 1489-1501.
- German, C. R., Bourles, D. L., Brown, E. T., Hergt, J., Colley, S., Higgs, N. C., Ludford,
 E. M., Nelsen, T. A., Feely, R. A., Raisbeck, G., Yiou, F., 1997. Hydrothermal
 scavenging on the Juan de Fuca Ridge: ²³⁰Th(xs), ¹⁰Be, and REEs in ridge-flank
 sediments. Geochimica et Cosmochimica Acta 61, 4067-4078.
- Goldberg, E. D., 1954. Marine Geochemistry 1: Chemical scavengers of the sea. Journal of Geology 62, 249-265.
- 751 Griffin, J.J., Windom, H., Goldberg, E.D., 1968. The distribution of clay minerals in the world ocean, Deep-Sea Research 15, 433-459.

775

776

- Griffith, D.R., McNichol, A.P., Xu L., McLaughlin, F.A., Macdonald, R.W., Brown,
 K.A., Eglinton, T.I., 2012. Carbon dynamics in the western Arctic Ocean: insights
 from full-depth carbon isotope profiles of DIC, DOC, and POC. Biogeosciences,
 9, 1217–1224.
- Guidi, L., Stemmann, L., Jackson, G. A., Ibanez, F., Claustre, H., Legendre, L., Picheral,
 M., Gorsky, G., 2009. Effects of phytoplankton community on production, size
 and export of large aggregates: A world-ocean analysis. Limnology and
 Oceanography 54, 1951-1963.
- Hall, I. R., Schmidt, S., McCave, I. N., Reyss, J.-L., 2000. Particulate matter distribution and ²³⁴Th/²³⁸U disequilibrium along the Northern Iberian Margin: implications for particulate organic carbon export. Deep Sea Research Part I: Oceanographic Research Papers 47, 557-582.
- Henderson, G. M., Maier-Reimer, E., 2002. Advection and removal of ²¹⁰Pb and stable Pb isotopes in the oceans: A general circulation model study. Geochimica et Cosmochimica Acta 66, 257-272.
- Ho, T. Y., Chou, W. C., Lin, H. L., Sheu, D. D., 2011. Trace metal cycling in the deep
 water of the South China Sea: The composition, sources, and fluxes of sinking
 particles. Limnology and Oceanography 56, 1225-1243.
- Ho, T. Y., Chou, W. C., Wei, C. L., Lin, F. J., Wong, G. T. F., Lin, H. L., 2010. Trace
 metal cycling in the surface water of the South China Sea: Vertical fluxes,
 composition, and sources. Limnology and Oceanography 55, 1807-1820.
 - Honda, M. C., Watanabe, S., 2010. Importance of biogenic opal as ballast of particulate organic carbon (POC) transport and existence of mineral ballast-associated and residual POC in the Western Pacific Subarctic Gyre. Geophysical Research Letters 37, L02605.
- Honeyman, B. D., Balistrieri, L. S., Murray, J. W., 1988. Oceanic trace metal scavenging:
 the importance of particle concentration. Deep-Sea Research Part II-Topical
 Studies in Oceanography 35, 227-246.
- Honeyman, B. D. and Santschi, P. H., 1989. A Brownian-pumping model for oceanic trace metal scavenging: evidence from Th isotopes. Journal of Marine Research, 47, 951-992.
- Honjo, S., 1976. Coccoliths: production, transportation and sedimentation. Marine Micropaleontology 1, 65-79.
- Honjo, S., 1978. Sedimentation of materials in the Sargasso Sea at a 5,367m deep station. Journal of Marine Research 36, 469-492
- Honjo, S., Krishfield, R. A., Eglinton, T. I., Manganini, S. J., Kemp, J. N., Doherty, K.,
 Hwang, J., McKee, T. K., Takizawa, T., 2010. Biological pump processes in the cryopelagic and hemipelagic Arctic Ocean: Canada Basin and Chukchi Rise.
 Progress in Oceanography 85, 137-170.
- Honjo, S., Manganini, S. J., Krishfield, R. A., François, R., 2008. Particulate organic
 carbon fluxes to the ocean interior and factors controlling the biological pump: A
 synthesis of global sediment trap programs since 1983. Progress in Oceanography
 76, 217-285.
- Honjo, S., Eglinton, T.I., Taylor C.D., Ulmer, K.M., Sievert, S.M., Bracher, A., German,
 C.R., Edgcomb, V., François, R., Iglesias-Rodriguez, M.D., van Mooy, B.,
 Repeta, D.J., 2014. Understanding the role of the biological pump in the global

807

808

809

810

811

818

819

820

821

822

823824

- carbon cycle: An imperative for ocean science, Oceanography, 27, 10–16, http://dx.doi.org/10.5670/oceanog.2014.78.
- Huang, S., Conte, M. H., 2009. Source/process apportionment of major and trace elements in sinking particles in the Sargasso Sea. Geochimica et Cosmochimica Acta 73, 65-90.
- Jackson, G.A. and Burd, A.B., this issue. Simulating particle dynamics in ocean biogeochemical models. Progress in Oceanography.
 - Jacquet, S. H. M., Savoye, N., Dehairs, F., Strass, V. H., Cardinal, D., 2008. Mesopelagic carbon remineralization during the European iron fertilization experiment. Global Biogeochemical Cycles 22, GB1023.
 - Jeandel, C., Bishop, J. K., Zindler, A., 1995. Exchange of Neodymium and its isotopes between seawater and small and large particles in the Sargasso Sea. Geochimica et Cosmochimica Acta, 59, 535-547.
- Jeandel, C., Tachikawa, K., Bory, A., Dehairs, F., 2000. Biogenic barium in suspended and trapped material as a tracer of export production in the tropical NE Atlantic (EUMELI sites). Marine Chemistry 71, 125-142.
- Jeandel C., Peucker-Ehrenbrink B., Jones M., Pearce C., Oelkers E., Godderis Y., Lacan F., Aumont O. and Arsouze T., 2011. Ocean margins: the missing term for oceanic element budgets? EOS transactions American Geophysical Union 92, 26.
 - Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata, H., Kubilay, N., La Roche, J., Liss, P. S., Mahowald, N., Prospero, J. M., Ridgwell, A. J., Tegen, I., Torres, R., 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67-71.
 - Johnson, K. S., 2001. Iron supply and demand in the upper ocean: Is extraterrestrial dust a significant source of bioavailable iron? Global Biogeochemical Cycles 15, 61-63.
- Karakas, G., Nowald, N., Blaas, M., Marchesiello, P., Frickenhaus, S., Schlitzer, R.,
 2006. High-resolution modeling of sediment erosion and particle transport across
 the northwest African shelf. Journal of Geophysical Research 111, C06025.
- Karakas, G., Nowald, N., Schäfer-Neth, C., Iversen, M., Barkmann, W., Fischer, G.,
 Marchesiello, P., Schlitzer, R., 2009. Impact of particle aggregation on vertical fluxes of organic matter. Progress in Oceanography 83, 331-341.
- Klaas, C., Archer, D. E., 2002. Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. Global Biogeochemical Cycles 16, 63-1-63-14.
- Knauer, G. A., Martin, J. H., Bruland, K. W., 1979. Fluxes of Particulate Carbon,
 Nitrogen, and Phosphorus in the Upper Water Column of the Northeast Pacific.
 Deep-Sea Research Part A: Oceanographic Research Papers 26, 97-108.
- Kretschmer, S., Geibert, W., Rutgers van der Loeff, M., Mollenhauer, G., 2010. Grain size effects on ²³⁰Thxs inventories in opal-rich and carbonate-rich marine sediments. Earth and Planetary Science Letters 294, 131-142.
- Kretschmer, S., Geibert, W., Rutgers van der Loeff, M. M., Schnabel, C., Xu, S.,
- Mollenhauer, G., 2011. Fractionation of ²³⁰Th, ²³¹Pa, and ¹⁰Be induced by particle size and composition within an opal-rich sediment of the Atlantic Southern
- Ocean. Geochimica et Cosmochimica Acta 75, 6971-6987.

865

875

876

877

878

879

880

- Krishnaswami, S., Lal, D., Somayajulu, B. L. K., 1976a. Investigation of gram quantities of Atlantic and Pacific surface particulates. Earth and Planetary Science Letter 32, 403-419.
- Krishnaswami, S., Lal, D., Somayajulu, B.L.K., Weiss, R.F., Craig, H., 1976b. Large-volume *in-situ* filtration of deep Pacific waters: mineralogical and radioisotope studies. Earth and Planetary Science Letters 32, 420- 429.
- Kumar, N., Anderson, R.F. and Biscaye, P.E., 1996. Remineralization of particulate authigenic trace metals in the Middle Atlantic Bight: Implications for proxies of export production. Geochimica et Cosmochimica Acta 60(18): 3383-3397.
- Kuss, J., Garbe-Schönberg, C. D., Kremling, K., 2001. Rare Earth Elements in suspended particulate material of North Atlantic surface waters. Geochimica et Cosmochimica Acta 65, 187–199.
- Kuss, J., Kremling, K., 1999. Particulate trace element fluxes in the deep Northeast Atlantic Ocean. Deep-Sea Research Part I-Oceanographic Research Papers 46, 149-169.
- Lacan, F., Jeandel, C., 2005. Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent ocean interface. Earth and Planetary Science Letters, 232, 245-257, doi:10.1016/j.epsl.2005.01.004.
- Lal, D., 1977. The oceanic microcosm of particles. Science 198, 997-1009.
 - Lal, D., 1980. Comments on some aspects of particulate transport in the oceans. Earth and Planetary Science Letters 49, 520.
- Lam, P.J., Bishop, J.K.B., 2007. High Biomass Low Export regimes in the Southern
 Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 54, 601-638.
- Lam, P. J., Bishop, J. K. B., 2008. The continental margin is a key source of iron to the HNLC North Pacific Ocean. Geophysical Research Letters 35, L07608.
- Lam, P. J., Doney, S. C., Bishop, J. K. B., 2011. The dynamic ocean biological pump:
 Insights from a global compilation of particulate organic carbon, CaCO3, and
 opal concentration profiles from the mesopelagic. Global Biogeochemical Cycles
 25, GB3009.
 - Lam, P.J., Twining, B.S., Jeandel, C., Roychoudhury, A., Resing, J., Santschi, P., Anderson, R.F., this issue. Methods for analyzing the concentration and speciation of major and trace elements in marine particles. Progress in Oceanography.
 - Lamborg, C. H., Buesseler, K. O., Lam, P. J., 2008. Sinking fluxes of minor and trace elements in the North Pacific Ocean measured during the VERTIGO program. Deep-Sea Research Part II-Topical Studies in Oceanography 55, 1564-1577.
- Lanci, L., D. V. Kent, P. E. Biscaye, and J. P. Steffensen, 2004. Magnetization of
 Greenland ice and its relationship with dust content, Journal of Geophysical
 Research 109, D09104, doi:10.1029/2003JD004433.
- Lanci L., Kent D. V., Biscaye P.E., Meteoric smoke concentration in the Vostok ice core estimated from superparamagnetic relaxation and some consequences for estimates of earth accretion rate, 2007. Geophysical Research Letters 34, L10803, doi:10.1029/2007GL029811.
- Landing, W. M., Bruland, K. W., 1987. The contrasting biogeochemistry of iron and manganese in the Pacific Ocean. Geochimica et Cosmochimica Acta 51, 29-43.

- Lee, S. H., Povinec, P., Gastaud, J., Oregioni, B., Coppola, L., Jeandel, C., 2009.
 Radionuclides as tracers of water fronts in the South Indian Ocean-ANTARES IV
 Results. Journal of Oceanography 65, 397-406.
- Lilley, M. D., Butterfield, D. A., Olson, E. J., Lupton, J. E., Macko, S. A., McDuff, R. E., 1993. Anomalous CH₄ and NH₄⁺ Concentrations at an Unsedimented Mid-Ocean-Ridge Hydrothermal System. Nature 364(6432), 45-47.
- Lomas, M. W., Steinberg, D. K., Dickey, T., Carlson, C. A., Nelson, N. B., Condon, R.
 H., Bates, N. R., 2010. Increased ocean carbon export in the Sargasso Sea linked to climate variability is countered by its enhanced mesopelagic attenuation.
 Biogeosciences 7, 57-70.
- Lourey, M. J., Trull, T. W., Tilbrook, B., 2004. Sensitivity of delta ¹³C of Southern
 Ocean suspended and sinking organic matter to temperature, nutrient utilization,
 and atmospheric CO₂. Deep-Sea Research Part I-Oceanographic Research Papers
 51, 281-305.
 - Luo, S. D., Ku, T. L., 2004. On the importance of opal, carbonate, and lithogenic clays in scavenging and fractionating ²³⁰Th, ²³¹Pa and ¹⁰Be in the ocean. Earth and Planetary Science Letters 220, 201-211.
- Lutz, M. J., Caldeira, K., Dunbar, R. B., Behrenfeld, M. J., 2007. Seasonal rhythms of net
 primary production and particulate organic carbon flux to depth describe the
 efficiency of biological pump in the global ocean. Journal of Geophysical
 Research 112, C10011.
- 912 McCave, I.N., 1975. Vertical flux of particles in the ocean. Deep-Sea Res., 22, 491-502.
- 913 McCave, I. N., 1984. Size spectra and aggregation of suspended particles in the deep 914 ocean. Deep-Sea Research Part a-Oceanographic Research Papers 31, 329-352. 915 McCave, I. N., 1986. Local and global aspects of the bottom nepheloid layers in the
- 915 McCave, I. N., 1986. Local and global aspects of the bottom nepheloid layers in the 916 world ocean. Netherlands Journal of Sea Research 20, 167-181.
- 917 McCave, I. N., 2001. Nepheloid layers. Academic Press, London.
- 918 McDonnell, A. M. P., Buesseler, K. O., 2010. Variability in the average sinking 919 velocities of marine particles. Limnology and Oceanography 55, 2085-2096.
- McDonnell, A. M. P., Lam, P., Lamborg, C. H., Buesseler, K., Sanders, R., Riley, J. S.,
 Marsayd, C., Smith, H. E. K., Sargent, E. C., Lampitt, R., Bishop, J. K. B., this
 issue. The oceanographic toolbox for the collection of sinking and suspended
 marine particles. Progress in Oceanography.
- 924 Michard, A., Albarède, F., Michard, G., Minster, J. F., Charlou, J. L., 1983. Rare-Earth 925 Elements and uranium in high-temperature solutions from East Pacific Rise 926 hydrothermal vent field (13°N). Nature 303, 795-797.
- Miquel, J.-C., Martin, J., Gasser, B., Baena, A. R. Y., Toubal, T., Fowler, S. W., 2011.
 Dynamics of particle flux and carbon export in the northwestern Mediterranean
 Sea: A two decade time-series study at the DYFAMED site. Progress in
 Oceanography 91, 461-481
- 931 Moffett, J. W., Ho, J., 1996. Oxidation of cobalt and manganese in seawater via a 932 common microbially catalyzed pathway. Geochimica et Cosmochimica Acta 60, 933 3415-3424.
- Mollenhauer, G., Eglinton, T. I., Ohkuchi, N., Schneider, R. R., Muller, P. J., Grootes, P.
 M., Rullkotter, J., 2003. Asynchronous alkenone and foraminifera records from

962

963

964

965

966 967

- the Benguela Upwelling System. Geochimica et Cosmochimica Acta 67, 2157-2171.
- 938 Mollenhauer, G., Kienast, M., Lamy, F., Meggers, H., Schneider, R. R., Hayes, J. M.,
 939 Eglinton, T. I., 2005. An evaluation of ¹⁴C age relationships between co-occurring
 940 foraminifera, alkenones and total organic carbon in continental margin sediments.
 941 Paleoceanography 20, PA1016.
- 942 Mottl, M., McConachy, T. F., 1990. Chemical processes in buyoant hydrothermal plumes 943 on the East Pacific Rise near 21-degrees-N. Geochimica et Cosmochimica Acta 944 54, 1911-1927.
- Neuer, S., Ratmeyer, V., Davenport, R., Fischer, G., Wefer, G., 1997. Deep water particle
 flux in the Canary Island region: seasonal trends in relation to long-term satellite
 derived pigment data and lateral sources. Deep Sea Research Part I:
 Oceanographic Research Papers 44, 1451-1466.
- Nozaki, Y., Horibe, Y., Tsubota, H., 1981. The water column distribution of thorium isotopes in the western North Pacific. Earth and Planetary Science Letters 54, 203-216.
- Okubo, A., Obata, H., Gamo, T., Yamada, M., 2012. ²³⁰Th and ²³²Th distributions in midlatitudes of the North Pacific Ocean: Effect of bottom scavenging. Earth and Planetary Science Letters 339/340, 139-150.
- Orians, K. J., Bruland, K. W., 1986. The biogeochemistry of aluminum in the Pacific Ocean. Earth and Planetary Science Letters 78, 397-410.
- Patsch, J., Kuhn, W., Radach, G., Casiano, J. M. S., Davila, M. G., Neuer, S.,
 Freudenthal, T., Llinas, O., 2002. Interannual variability of carbon fluxes at the
 north Atlantic Station ESTOC. Deep-Sea Research Part II-Topical Studies in
 Oceanography 49, 253-288.
 - Paytan, A., Kastner, M., Martin, E. E., Macdougall, J. D., Herbert, T., 1993. Marine barite as a monitor of Sr isotopic composition. Nature 366, 445-449.
 - Petschik, R., Kuhn, G., Gingele, F., 1996. Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Marine Geology, 130, 203-229.
 - Peucker-Ehrenbrink, B., 2009. Land2Sea database of river drainage basin sizes, annual water discharges, and suspended sediment fluxes. Geochemistry Geophysics Geosystems 10, 1525-2027.
- Rempfer, J., Stocker, T. F., Joos, F., Dutay, J. C., 2012. On the relationship between Nd
 isotopic composition and ocean overturning circulation in idealized freshwater
 discharge events. Paleoceanography 27, PA3211.
- Rempfer, J., Stocker, T. F., Joos, F., Dutay, J. C., Siddall, M., 2011. Modelling Nd isotopes with a coarse resolution ocean circulation model: Sensitivities to model
 parameters and source/sink distributions. Geochimica et Cosmochimica Acta 75,
 5927-5950.
- Renault, A., Provost, C., Sennéchael, N., Barré, N., Kartavtseff, A., 2011. Two full depth velocity sections in the Drake Passage in 2006: Transport estimates. Deep
 Sea Research Part II: Topical Studies in Oceanography 58, 2572-2591.
- Roy-Barman, M., Chen, J. H., Wasserburg, G. J., 1996. ²³⁰Th-²³²Th systematics in the Central Pacific Ocean: the sources and fate of thorium. Earth and Planetary Science Letters 139, 351-363.

- 982 Roy-Barman, M., Jeandel, C., 2011. La Géochimie Marine. Vuibert Eds. Paris.
- 983 Roy-Barman, M., Jeandel, C., Souhaut, M., Rutgers van der Loeff, M. M., Voege, I.,
- Leblond, N., Freydier, R., 2005. The influence of particle composition on
- thorium scavenging in the NE Atlantic Ocean (POMME experiment). Earth and Planetary Science Letters 240, 681-693.
- Roy-Barman, M., Lemaitre, C., Ayrault, S., Jeandel, C., Souhaut, M., Miquel, J. C., 2009.
 The influence of particle composition on thorium scavenging in the
 Mediterranean Sea. Earth and Planetary Science Letters 286, 526-534.
- Rudnicki, M. D., Elderfield, H., 1993. A chemical-model of the buoyant and neutrally
 buoyant plume above the Tag Vent Field, 26 Degrees-N, Mid-Atlantic Ridge.
 Geochimica et Cosmochimica Acta, 57, 2939-2957.
- Rutgers van der Loeff, M. M., Berger, G., W., 1993. Scavenging of ²³⁰Th and ²³¹Pa near the Antarctic Polar Front in the South Atlantic. Deep-Sea Research Part I-Oceanographic Research Papers, 40, 339-357.
- Rutgers van der Loeff, M. M., Boudreau, B. P., 1997. The effect of resuspension on chemical exchanges at the sediment water interface - A modelling and natural radiotracer approach. Journal of Marine System 11, 305-342.
- Santschi, P. H., Murray, J. W., Baskaran, M., Benitez-Nelson, C. R., Guo, L. D., Hung,
 C.-C., Lamborg, C., Moran, S. B., Passow, U., Roy-Barman, M., 2006. Thorium
 speciation in seawater. Marine Chemistry 100, 250-268.
- Sarin, M. M., Krishnaswami, S., Dalai, T. K., Ramaswamy, V., Ittekkot, V., 2000.

 Settling fluxes of U- and Th-series nuclides in the Bay of Bengal: results from time-series sediment trap studies. Deep-Sea Research Part I-Oceanographic Research Papers 47(10), 1961-1985.
- Sarmiento, J. L., Feely, H. W., Moore, W. S., Bainbridge, A., 1976. The relationship between vertical eddy diffusion and buoyancy gradient in the deep sea. Earth and Planetary Science Letters 32, 357-370.
- Scholten, J. C., Fietzke, J., Vogler, S., Rutgers van der Loeff, M. M., Mangini, A.,
 Koeve, W., Stoffers, P., Antia, A., Neuer, S., Waniek, J. J., 2001. Trapping
 efficiencies of sediment traps from the deep eastern North Atlantic: The ²³⁰Th
 calibration. Deep Sea Research Part II: Topical Studies in oceanography. JGOFS
 North Atlantic Synthesis 48, 2383-2408.
- Shanks, A.L., Trent, J.D., 1980. Marine snow sinking rates and potential role in vertical flux. Deep-Sea Research 27, 137-143.
- Sherrell, R. M., Boyle, E. A., 1992. The trace-metal composition of suspended Particles in the Oceanic Water Column near Bermuda. Earth and Planetary Science Letters 111, 155-174.
- Sherrell, R. M., Field, M. P., Gao, Y., 1998. Temporal variability of suspended mass and composition in the Northeast Pacific water column: relationships to sinking flux and lateral advection. Deep-Sea Research Part II-Topical Studies in Oceanography 45, 733-761.
- Sherrell, R. M., Field, P., Ravizza, G., 2000. Uptake and fractionation of Rare Earth Elements on hydrothermal plume particles at 9°45′N, East Pacific Rise.

 Geochimica et Cosmochimica Acta 63, 1709-1722.
- Steinberg, D. K., Cope, J., Wilson, S., Kobari, T., 2008. A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North

1042

- Pacific Ocean. Deep Sea Research Part II- Topical Studies in Oceanography 55, 1615-1635.
- Sternberg, E., Jeandel, C., Robin, E., Souhaut, M., 2008. Seasonal cycle of suspended barite in the Mediterranean Sea. Geochimica et Cosmochimica Acta 72, 4020-4034.
- Stewart, G., Cochran, J. K., Miquel, J. C., Masque, P., Szlosek, J., Baena, A., Fowler, S. W., Gasser, B., Hirschberg, D. J., 2007. Comparing POC export from ²³⁴Th/²³⁸U and ²¹⁰Po/²¹⁰Pb disequilibria with estimates from sediment traps in the northwest Mediterranean. Deep-Sea Research Part I-Oceanographic Research Papers 54, 1549-1570.
- Sylvan, J. B., Pyenson, B. C., Rouxel, O., German, C. R., Edwards, K. J., 2012. Timeseries analysis of two hydrothermal plumes at 9 degrees 50'N East Pacific Rise reveals distinct, heterogeneous bacterial populations. Geobiology 10, 178-192.
 - Tachikawa, K., Jeandel, C., Dupre, B., 1997. Distribution of Rare Earth Elements and neodymium isotopes in settling particulate material of the Tropical Atlantic Ocean (EUMELI site). Deep-Sea Research Part I-Oceanographic Research Papers 44, 1769-1792.
- Tachikawa, K., Jeandel, C., Roy-Barman, M., 1999a. A new approach to the Nd residence time in the ocean: the role of atmospheric inputs. Earth and Planetary Science Letters 170, 433-446.
- Tachikawa, K., Jeandel, C., Vangriesheim, A., Dupré, B., 1999b. Distribution of Rare
 Earth Elements and neodymium isotopes in suspended particles of the tropical
 Atlantic Ocean (EUMELI site). Deep-Sea Research Part I-Oceanographic
 Research Papers 46, 733-755.
- Tachikawa, K., Roy-Barman, M., Michard, A., Thouron, D., Yeghicheyan, D., Jeandel, C., 2004. Neodymium isotopes in the Mediterranean Sea: Comparison between seawater and sediment signals. Geochimica et Cosmochimica Acta 68, 3095-3106.
- Tagliabue, A., Bopp, L., Dutay, J. C., Bowie, A. R., Chever, F., Jean-Baptiste, P.,
 Bucciarelli, E., Lannuzel, D., Remenyi, T., Sarthou, G., Aumont, O., Gehlen, M.,
 Jeandel, C., 2010. Hydrothermal contribution to the oceanic dissolved iron
 inventory. Nature Geoscience 3, 252-256.
- Toner, B. M., Fakra, S. C., Manganini, S. J., Santelli, C. M., Marcus, M. A., Moffett, J., Rouxel, O., German, C. R., Edwards, K. J., 2009. Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume. Nature Geoscience 2, 197-201.
- Trull, T. W., Bray, S. G., Buesseler, K. O., Lamborg, C. H., Manganini, S., Moy, C.,
 Valdes, J., 2008. In situ measurement of mesopelagic particle sinking rates and
 the control of carbon transfer to the ocean interior during the Vertical Flux in the
 Global Ocean (VERTIGO) voyages in the North Pacific. Deep-Sea Research Part
 II-Topical Studies in Oceanography 55, 1684-1695.
- Turekian, K. K., 1977. The fate of metals in the ocean. Geochimica et Cosmochimica Acta 41, 1139-1144.
- Turnewitsch, R., Reyss, J.-L., Nycander, J., Waniek, J. J., Lampitt, R. S., 2008. Internal tides and sediment dynamics in the deep sea-Evidence from radioactive ²³⁴Th/²³⁸U disequilibria. Deep Sea Research Part I: Oceanographic Research Papers 55, 1727.

1087 1088

1089

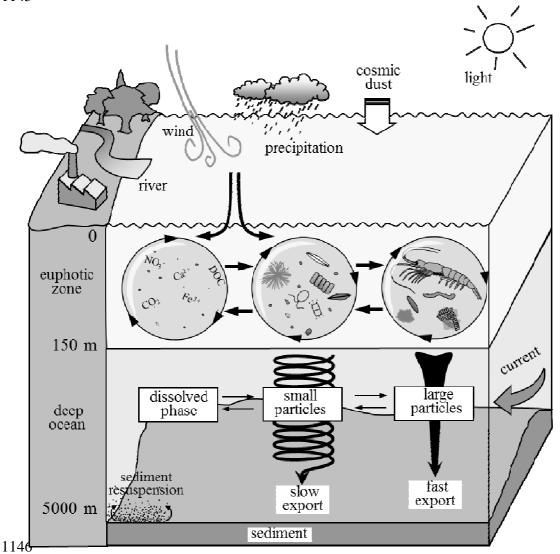
- van Beek, P., Francois, R., Conte, M., Reyss, J- L., Souhaut, M., Charette, M., 2007.

 1075

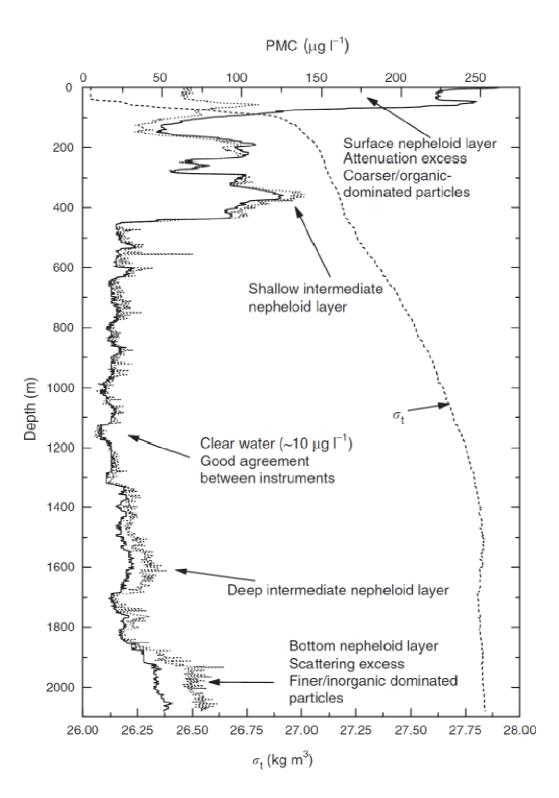
 228 Ra/²²⁶Ra and ²²⁶Ra/Ba ratios to track barite formation and transport in the water column. Geochimica et Cosmochimica Acta 71, 71-86.
- van Beek, P., Sternberg, E., Reyss, J. L., Souhaut, M., Robin, E., Jeandel, C., 2009.

 1078

 228 Ra/²²⁶Ra and ²²⁶Ra/Ba ratios in the Western Mediterranean Sea: Barite
 formation and transport in the water column. Geochimica et Cosmochimica Acta
 1080


 73, 4720-4737.
- van Beek, P., Reyss, J-L., 2001. ²²⁶Ra in marine barite: new constraints on supported ²²⁶Ra. Earth and Planetary Science Letters 187, 147-161.
- van Beek, P, Reyss, J-L, Gersonde, R., Paterne, M., Rutgers van der Loeff, M., Kuhn, G., 2002. ²²⁶Ra in barite: Absolute dating of Holocene Southern Ocean sediments and reconstruction of sea-surface reservoir ages. Geology 30, 731-734.
 - Venchiarutti, C., Rutgers van der Loeff, M., Stimac, I., 2011. Scavenging of ²³¹Pa and ²³⁰Th isotopes based on dissolved and size-fractionated particulate distributions at Drake Passage (ANTXXIV-3). Deep-Sea Research Part II-Topical Studies in Oceanography 58, 2767–2784.
- 1090 Verdugo, P., 2012. Marine microgels. Annual Review of Marine Science 4, 375-400.
- Warren, B. A.,1981. Deep circulation of the world ocean, in Evolution of Physical
 Oceanography, B. A. Warren and C. Wunsch (eds.), the MIT Press, Cambridge,
 Massachusetts and London, England, pp. 6-41.
- Williams, P. M., Robertson, K. J., Soutar, A., Griffin, S. M., Druffel, E. R. M., 1992.

 Isotopic signatures (¹⁴C, ¹³C, ¹⁵N) as tracers of sources and cycling of soluble and particulate organic-matter in the Santa-Monica Basin, California. Progress in Oceanography 30, 253-290.


1100	Figure Captions
1101	
1102	Figure 1
1103	Illustration of the different sources, internal cycling and sinks of oceanic particles. Reproduced
1104	from Roy-Barman and Jeandel (2011).
1105	
1106	Figure 2
1107	Profiles of particulate matter concentration (PMC) at the Northern Iberian Margin (43°N, June
1108	1997) calculated from beam attenuation (solid line) and light scattering (dotted line) against
1109	depth, together with the density structure (\square_t) of the water column (dashed line). Reprinted from
1110	"Hall, I. R., Schmidt, S., McCave, I. N., Reyss, JL., 2000. Deep Sea Research Part I:
1111	Oceanographic Research Papers 47, 557-582. Copyright (2014), with permission from Elsevier"
1112	
1113	Figure 3
1114	Longitudinal section of the dry weight of particulate matter along the western Atlantic Ocean
1115	from the GEOSECS program. Reprinted from "Brewer, P. G., Spencer, D. W., Biscaye, P.
1116	E., Hanley, A., Sachs, P. L., Smith, C. L., Kadar, S., Fredericks, J., 1976. The
1117	distribution of particulate matter in the Atlantic Ocean. Earth and Planetary Science
1118	Letters 32, 393-402. Copyright (2014), with permission from Elsevier"
1119	
1120	Figure 4
1121	Particle dynamics as depicted by thorium (Th) isotopes in the mid-80s. Th isotopes are produced
1122	in solution by radioactive decay of the soluble U or Ra isotopes. Due to their very low solubility,
1123	Th isotopes are rapidly adsorbed on small particles and colloids that represent most of the
1124	available solid surface. Th isotopes then follow the dynamics of particles. Th isotopes differ by
1125	their radioactive decay constants (lambda) and input functions. Combining the different isotopes
1126	allows determining the other time constants: k_{ads} for adsorption, k_{des} for desorption, k_{aggr} for
1127	aggregation, k_{dis} for disaggregation, as well as the sinking speeds of the different types of
1128	particles. Remineralization of large particles was neglected due to the low solubility of thorium.
1129	Colloids were not included either because their impact on Th isotopes was highlighted later
1130	(Honeyman and Santschi, 1989). The main 1-D scheme is certainly dramatically oversimplified
1131	compared to the ecosystem-driven real processes. Small particles are aggregated into large
1132	particles either by zooplankton grazing (producing fecal pellets) or by abiotic aggregation of
1133	organic and inorganic material in fluff, due to sticking exudates produced at the end of the bloom

Large particles can scavenge and drag small ones in a sort of "oceanic piggy-back" process (Lal,
1980). Large particles can also disaggregate into small particles when sinking. Indeed, the most
fragile large particles, such as marine snow, can be broken by the turbulence of the current. Fecal
pellets can also be destroyed by bacterial activity. The apparent settling velocity is the net effect
of all these processes. The deduced particle residence time can therefore be applied to other
poorly soluble TEIs. From Roy-Barman and Jeandel (2011) and redrawn from Bacon et al.
(1985).

Figure 1

Figure 2

1153 **Figure 3** 1154

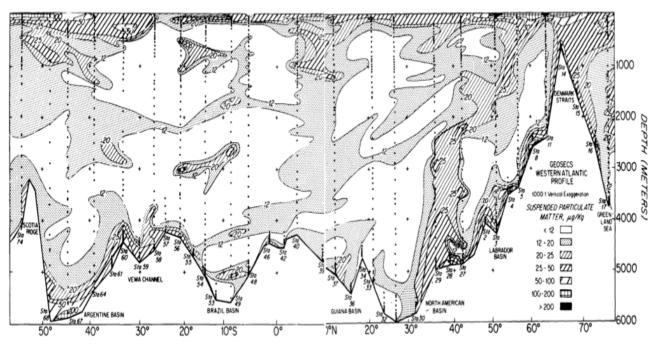
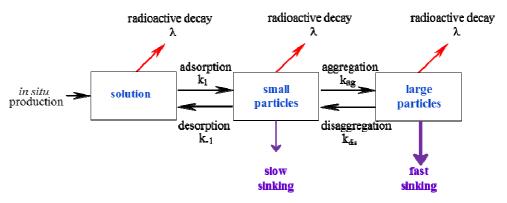



Fig. 2. Longitudinal section of the dry weight of particulate matter in the western Atlantic Ocean.

Figure 4

