GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2020-07-10
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2020-05-11
    Beschreibung: The interseismic slip distribution in the Marmara fault system represents both observational and modelling challenges. The observational challenge is obvious: the faults are under water and to understand their interseismic behavior (creeping versus locked) requires expensive and logistically difficult underwater geodetic measurements, alongside those on land. Up to now, two such underwater studies have been conducted and they suggest that the segment to the south of Istanbul zone (so-called Central segment) is locked while some creep is probably going on along the neighboring segment to the west. Given these two important findings, the slip distribution problem is still non-trivial due to the fact that our experiments so far demonstrate that the block-based slip inversions and those that only consider a single fault (with the same geometry as one of the boundaries of the blocks) give significantly different results. In this study we approach the problem using three methodologies: block models with spatially non-varying strains within individual blocks, a boundary element approach and a continuum kinematic approach. Although the block model does not give spatially varying strains, the inversion results from the block model can be used as an input to model strain field in the vicinity of the fault. We construct a formulation to correlate the results from these with the strain rates obtained using focal mechanism summations.
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2024-02-07
    Beschreibung: The Sea of Marmara has been the focus of numerous marine geophysical studies during the last couple of decades. Determination of the interseismic slip distribution along the Main Marmara Fault (MMF) has observational difficulties due to the fact that the fault is under the sea. In addition to the onshore geodetic studies, two underwater geodetic studies were carried out recently and brought new clues about locked/creeping status of two different fault segments. In this study, we investigate the interseismic deformation of the Marmara region from a kinematic perspective using both block and continuum kinematic models. Block model inversion yields relative motion along the block boundaries as well as the distribution of slip deficit on the faults bounding the blocks. Calculated long term slip rates are 19–20 mm/yr for the MMF and 3–4 mm/yr for the Southern branch of the North Anatolian Fault (SNAF). In order to determine the sensitivity of the slip deficit solution to arbitrary spatial discretizations, we perform a series of checkerboard tests and optimize node distribution on the MMF accordingly. We also explore the sensitivity of inversion results on the MMF to assumptions regarding SNAF long term slip and interseismic locking. This study shows that the underwater geodetic data can be combined with the GPS data in a joint inversion, bringing a better constrained slip deficit distribution on the MMF. MMF has aseismic creep in the west of the Marmara Sea, with creep rates approaching long term slip rates in the Central Basin. On the other hand, the fault appears locked from ∼28.2°E eastward. In the best fitting model, the fault segment across Silivri is locked down to ∼10 km. The existence of a hazardous seismic gap in the Sea of Marmara, potentially yielding a magnitude 7.5 earthquake, is thus confirmed. The continuum approach is used to calculate strain rate fields from GPS data alone, from the output (slip rates and block average strain rates) of the best-fitting block model, and from the GPS residuals of this model. Our continuum models show that most of the accumulated strain in the Marmara region is indeed focused around the MMF, but also that strain distributed within the blocks cannot be neglected. On the other hand, the SNAF system differs from the MMF in that it appears as a 50 km wide zone of deformation with a patchy distribution of strain reflecting the activity of individual faults.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...