GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-03-08
    Description: Based on morphobathymetric and seismic reflection data, we studied a large landslide body from the eastern Sea of Marmara (NW Turkey), along the main strand of the North Anatolian Fault, one of the most seismically active geological structures on Earth. Due to its location and dimensions, the sliding body may cause tsunamis in case of failure possibly induced by an earthquake. This could affect heavily the coasts of the Sea of Marmara and the densely populated Istanbul Metropolitan area, with its exposed cultural heritage assets. After a geological and geometrical description of the landslide, thanks to high-resolution marine geophysical data, we simulated numerically possible effects of its massive mobilization along a basal displacement surface. Results, within significant uncertainties linked to dimensions and kinematics of the sliding mass, suggest generation of tsunamis exceeding 15–20 m along a broad coastal sector of the eastern Sea of Marmara. Although creeping processes or partial collapse of the landslide body could lower the associated tsunami risk, its detection stresses the need for collecting more marine geological/geophysical data in the region to better constrain hazards and feasibility of specific emergency plans.
    Description: Published
    Description: 2295-2310
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: Landslide ; Tsunamis ; Sea of Marmara ; North Anatolian Fault ; Risk Assessment ; Earthquakes ; Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-10
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: Using offshore geodetic observations, we show that a segment of the North Anatolian Fault in the central Sea of Marmara is locked and therefore accumulating strain. The strain accumulation along this fault segment was previously extrapolated from onshore observations or inferred from the absence of seismicity, but both methods could not distinguish between fully locked or fully creeping fault behavior. A network of acoustic transponders measured crustal deformation with mm-precision on the seafloor for 2.5 years and did not detect any significant fault displacement. Absence of deformation together with sparse seismicity monitored by ocean bottom seismometers indicates complete fault locking to at least 3 km depth and presumably into the crystalline basement. The slip-deficit of at least 4m since the last known rupture in 1766 is equivalent to an earthquake of magnitude 7.1 to 7.4 in the Sea of Marmara offshore metropolitan Istanbul.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The Sea of Marmara has been the focus of numerous marine geophysical studies during the last couple of decades. Determination of the interseismic slip distribution along the Main Marmara Fault (MMF) has observational difficulties due to the fact that the fault is under the sea. In addition to the onshore geodetic studies, two underwater geodetic studies were carried out recently and brought new clues about locked/creeping status of two different fault segments. In this study, we investigate the interseismic deformation of the Marmara region from a kinematic perspective using both block and continuum kinematic models. Block model inversion yields relative motion along the block boundaries as well as the distribution of slip deficit on the faults bounding the blocks. Calculated long term slip rates are 19–20 mm/yr for the MMF and 3–4 mm/yr for the Southern branch of the North Anatolian Fault (SNAF). In order to determine the sensitivity of the slip deficit solution to arbitrary spatial discretizations, we perform a series of checkerboard tests and optimize node distribution on the MMF accordingly. We also explore the sensitivity of inversion results on the MMF to assumptions regarding SNAF long term slip and interseismic locking. This study shows that the underwater geodetic data can be combined with the GPS data in a joint inversion, bringing a better constrained slip deficit distribution on the MMF. MMF has aseismic creep in the west of the Marmara Sea, with creep rates approaching long term slip rates in the Central Basin. On the other hand, the fault appears locked from ∼28.2°E eastward. In the best fitting model, the fault segment across Silivri is locked down to ∼10 km. The existence of a hazardous seismic gap in the Sea of Marmara, potentially yielding a magnitude 7.5 earthquake, is thus confirmed. The continuum approach is used to calculate strain rate fields from GPS data alone, from the output (slip rates and block average strain rates) of the best-fitting block model, and from the GPS residuals of this model. Our continuum models show that most of the accumulated strain in the Marmara region is indeed focused around the MMF, but also that strain distributed within the blocks cannot be neglected. On the other hand, the SNAF system differs from the MMF in that it appears as a 50 km wide zone of deformation with a patchy distribution of strain reflecting the activity of individual faults.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...