GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Forschungsbericht ; Autonomes Fahrzeug ; Ortsbestimmung ; Wegmessung ; GNSS ; Kamera ; Multisensor ; CAN-Bus ; Datenfusion
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (26 Seiten, 2,34 MB) , Illustrationen, Diagramme
    Language: German
    Note: Förderkennzeichen BMVI 16 AVF 1026 A , Verbundnummer 01178976 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Sprache der Zusammenfassung: Deutsch, Englisch
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Highlights ● We developed a pH eddy covariance system to detect a sub-seafloor CO2 release. ● It detected CO2 emission to the water column at injection rates of 5.7–143 kg d − 1. ● It was also sensitive enough to quantify benthic biological CO2 production. ● Close to bubble streams, the kinetics of aqueous CO2 equilibration are important. ● This system can be used to detect, attribute, and quantify seafloor sources of CO2. We detected a controlled release of CO2 (g) with pH eddy covariance. We quantified CO2 emission using measurements of water velocity and pH in the plume of aqueous CO2 generated by the bubble streams, and using model predictions of vertical CO2 dissolution and its dispersion downstream. CO2 (g) was injected 3 m below the floor of the North Sea at rates of 5.7–143 kg d − 1. Instruments were 2.6 m from the center of the bubble streams. In the absence of injected CO2, pH eddy covariance quantified the proton flux due to naturally-occurring benthic organic matter mineralization (equivalent to a dissolved inorganic carbon flux of 7.6 ± 3.3 mmol m − 2 d − 1, s.e., n = 33). At the lowest injection rate, the proton flux due to CO2 dissolution was 20-fold greater than this. To accurately quantify emission, the kinetics of the carbonate system had to be accounted for. At the peak injection rate, 73 ± 13% (s.d.) of the injected CO2 was emitted, but when kinetics were neglected, the calculated CO2 emission was one-fifth of this. Our results demonstrate that geochemical techniques can detect and quantify very small seafloor sources of CO2 and attribute them to natural or abiotic origins.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-08-03
    Description: NOMAD is an autonomous benthic crawler carrying scientific instrumentation for scanning a continuous track of the seafloor and performing cyclic oxygen profiles and in-situ measurements of total exchange rates in depth of up to 6000m. It expands the line of preceding crawlers by achieving the highest payload to weight ratio by the application of functionintegrating lightweight design that is instantiated as low-density design in the context of underwater systems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-02-01
    Description: TRAMPER is an autonomous benthic crawler equipped with oxygen sensors to perform long-term flux time series measurements at abyssal depth. The crawler is developed within the HGF-Alliance ROBEX. TRAMPER has five main subsystems: the titanium frame with the flotation, the caterpillar drive system, recovery and communication systems, energy and electronics and a multi-optode profiler as the scientific payload. A lithium-ion battery pack provides the energy to run an oxygen profiling system performing consecutive measurements (〉52 cycles) along its transecting moving on the seafloor. This new generation of optode-based oxygen monitoring system allows using 18 oxygen optodes and is able to perform in situ calibrations. A video-guided launching system is used to deploy the crawler at the seafloor. At the seafloor the pre-programmed mission scenario is performed consisting of consecutive sleeping, moving and measurement cycles. The aim is to cover a seasonal cycle of settling organic matter on the seafloor and to resolve the impact on the benthic community respiration activity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-02-01
    Description: We describe a novel, field-deployable hyperspectral imaging system, called Hypersub, that allows noninvasive in situ mapping of the microphytobenthos (MPB) biomass distribution with a high spatial (sub-millimeter) and temporal (minutes) resolution over areas of 1 × 1 m. The biomass is derived from a log-transformed and near-infrared corrected reflectance hyperspectral index, which exhibits a linear relationship (R2 〉 0.97) with the chlorophyll a (Chl a) concentration in the euphotic zone of the sediment and depends on the sediment grain size. Deployments of the system revealed that due to factors such as sediment topography, bioturbation, and grazing, the distribution of MPB in intertidal sediments is remarkably heterogeneous, with Chl a concentrations varying laterally by up to 400% of the average value over a distance of 1 cm. Furthermore, due to tidal cycling and diel light variability, MPB concentrations in the top 1 mm of sediments are very dynamic, changing by 40–80% over a few hours due to vertical migration. We argue that the high-resolution hyperspectral imaging method overcomes the inadequate resolution of traditional methods based on sedimentary Chl a extraction, and thus helps improve our understanding of the processes that control benthic primary production in coastal sediments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-12-15
    Description: We detected a controlled release of CO2 (g) with pH eddy covariance. We quantified CO2 emission using measurements of water velocity and pH in the plume of aqueous CO2 generated by the bubble streams, and using model predictions of vertical CO2 dissolution and its dispersion downstream. CO2 (g) was injected 3 m below the floor of the North Sea at rates of 5.7–143 kg d-1. Instruments were 2.6 m from the center of the bubble streams. In the absence of injected CO2, pH eddy covariance quantified the proton flux due to naturally-occurring benthic organic matter mineralization (equivalent to a dissolved inorganic carbon flux of 7.6 ± 3.3 mmol m-2 d-1, s.e., n = 33). At the lowest injection rate, the proton flux due to CO2 dissolution was 20-fold greater than this. To accurately quantify emission, the kinetics of the carbonate system had to be accounted for. At the peak injection rate, 73 ± 13% (s.d.) of the injected CO2 was emitted, but when kinetics were neglected, the calculated CO2 emission was one-fifth of this. Our results demonstrate that geochemical techniques can detect and quantify very small seafloor sources of CO2 and attribute them to natural or abiotic origins.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Koopmans, D., Meyer, V., Schaap, A., Dewar, M., Farber, P., Long, M., Gros, J., Connelly, D., & Holtappels, M. Detection and quantification of a release of carbon dioxide gas at the seafloor using pH eddy covariance and measurements of plume advection. International Journal of Greenhouse Gas Control, 112, (2021): 103476, https://doi.org/10.1016/j.ijggc.2021.103476.
    Description: We detected a controlled release of CO2 (g) with pH eddy covariance. We quantified CO2 emission using measurements of water velocity and pH in the plume of aqueous CO2 generated by the bubble streams, and using model predictions of vertical CO2 dissolution and its dispersion downstream. CO2 (g) was injected 3 m below the floor of the North Sea at rates of 5.7–143 kg d − 1. Instruments were 2.6 m from the center of the bubble streams. In the absence of injected CO2, pH eddy covariance quantified the proton flux due to naturally-occurring benthic organic matter mineralization (equivalent to a dissolved inorganic carbon flux of 7.6 ± 3.3 mmol m − 2 d − 1, s.e., n = 33). At the lowest injection rate, the proton flux due to CO2 dissolution was 20-fold greater than this. To accurately quantify emission, the kinetics of the carbonate system had to be accounted for. At the peak injection rate, 73 ± 13% (s.d.) of the injected CO2 was emitted, but when kinetics were neglected, the calculated CO2 emission was one-fifth of this. Our results demonstrate that geochemical techniques can detect and quantify very small seafloor sources of CO2 and attribute them to natural or abiotic origins.
    Description: This project received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 654462 (STEMM-CCS), it also received funding from the Max Planck Society and the Helmholtz Society. MHL was supported by US NSF grant # OCE-1657727.
    Keywords: CO2 vent ; Offshore CCS ; Leakage detection and quantification ; Marine sediment ; Proton flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...