GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :American Geophysical Union,
    Keywords: Volcanism-Italy-Stromboli. ; Stromboli (Italy)-Eruption, 2002. ; Stromboli (Italy)-Eruption, 2003. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (411 pages)
    Edition: 1st ed.
    ISBN: 9781118671474
    Series Statement: Geophysical Monograph Series ; v.182
    Language: English
    Note: Intro -- Title Page -- Contents -- Preface -- The Stromboli Volcano: An Integrated Study of the 2002-2003 Eruption-Introduction -- Section I: The Volcanic System of Stromboli -- Geological-Structural Framework of Stromboli Volcano, Past Collapses, and the Possible Influence on the Events of the 2002-2003 -- Volcanology and Magma Geochemistry of the Present-Day Activity: Constraints on the Feeding System -- Dynamics of Strombolian Activity -- Fluid Geochemistry of Stromboli -- Crater Gas Emissions and the Magma Feeding System of Stromboli Volcano -- Upper Conduit Structure and Explosion Dynamics at Stromboli -- Section II: Eruption Onset -- Volcanic and Seismic Activity at Stromboli Preceding the 2002-2003 Flank Eruption -- The Eruptive Activity of 28 and 29 December 2002 -- Geochemical Prediction of the 2002-2003 Stromboli Eruption From Variations in C02 and Rn Emissions and in Helium and Carbon Isotopes -- Section III: Landslides, Tsunami, and the Sciara del Fuoco Instability -- Slope Failures Induced by the December 2002 Eruption at Stromboli Volcano -- The Double Landslide-Induced Tsunami -- Deep-Sea Deposits of the Stromboli 30 December 2002 Landslide -- Integrated Subaerial-Submarine Morphological Evolution of the Sciara del Fuoco After the 2002 Landslide -- Movements of the Sciara del Fuoco -- Section IV: The Lava Flow Emission on the Sciara Del Fuoco -- Evolution of the Lava Flow Field by Daily Thermal and Visible Airborne Surveys -- Textural and Compositional Characteristics of Lavas Emitted During the December 2002 to July 2003 Stromboli Eruption (Italy): In -- 2002-2003 Lava Flow Eruption of Stromboli: A Contribution to Understanding Lava Discharge Mechanisms Using Periodic Digital Phot -- Gas Flux Rate and Migration of the Magma Column -- Variations of Soil Temperature, CO2 Flux, and Meteorological Parameters. , Seismological Insights on the Shallow Magma System -- Fluid Circulation and Permeability Changes in the Summit Area of Stromboli Volcano -- Section V: The 5th April Paroxysmal Explosive Event -- The 5 April 2003 Explosion of Stromboli: Timing of Eruption Dynamics Using Thermal Data -- The Paroxysmal Event and Its Deposits -- Mineralogical, Geochemical, and Isotopic Characteristics of the Ejecta From the 5 April 2003 Paroxysm at Stromboli, Italy: Infer -- The 5 April 2003 Paroxysm at Stromboli: A Review of Geochemical Observations -- Ground Deformation From Ground-Based SAR Interferometry -- Section VI: Risk Management -- Stromboli (2002-2003) Crisis Management and Risk Mitigation Actions -- Stromboli 2002-2003 Eruption -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Bulletin of volcanology, Berlin : Springer, 1986, 67(2005), Seite 314-330, 0258-8900
    In: volume:67
    In: year:2005
    In: pages:314-330
    Type of Medium: Article
    ISSN: 0258-8900
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-18
    Description: Volcanic crises are complex and especially challenging to manage. Volcanic unrest is characterised by uncertainty about whether an eruption will or will not take place, as well as its possible location, size and evolution. Planning is further complicated by the range of potential hazards and the variety of disciplines involved in forecasting and responding to volcanic emergencies. Effective management is favoured at frequently active volcanoes, owing to the experience gained through the repeated ‘testing’ of systems of communication. Even when plans have not been officially put in place, the groups involved tend to have an understanding of their roles and responsibilities and those of others. Such experience is rarely available at volcanoes that have been quiescent for several generations. Emergency responses are less effective, not only because of uncertainties about the volcanic system itself, but also because scientists, crisis directors, managers and the public are inexperienced in volcanic unrest. In such situations, tensions and misunderstandings result in poor communication and have the potential to affect decision making and delay vital operations. Here we compare experiences on communi- cating information during crises on volcanoes reawakening after long repose (El Hierro in the Canary Islands) and in frequent eruption (Etna and Stromboli in Sicily). The results provide a basis for enhancing commu- nication protocols during volcanic emergencies.
    Description: Published
    Description: 1-17
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: N/A or not JCR
    Keywords: Etna volcano ; Stromboli volcano ; Canary Islands ; volcanic emergencies ; communication ; volcanic crisis ; Procedures for Communications During Volcanic Emergencies ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-16
    Description: Fogo volcano erupted in 2014–2015 producing an extensive lava flow field in the summit caldera that destroyed two villages, Portela and Bangaeira. The eruption started with powerful explosive activity, lava fountains, and a substantial ash column accompanying the opening of an eruptive fissure. Lava flows spreading from the base of the eruptive fissure produced three arterial lava flows. By a week after the start of the eruption, a master lava tube had already developed within the eruptive fissure and along the arterial flow. In this paper, we analyze the emplacement processes based on observations carried out directly on the lava flow field, remote sensing measurements carried out with a thermal camera, SO2 fluxes, and satellite images, to unravel the key factors leading to the development of lava tubes. These were responsible for the rapid expansion of lava for the ~7.9 km length of the flow field, as well as the destruction of the Portela and Bangaeira villages. The key factors leading to the development of tubes were the low topography and the steady magma supply rate along the arterial lava flow. Comparing time-averaged discharge rates (TADR) obtained from satellite and Supply Rate (SR) derived from SO2 flux data, we estimate the amount and timing of the lava flow field endogenous growth, with the aim of developing a tool that could be used for hazard assessment and risk mitigation at this and other volcanoes.
    Description: This research received no external funding.
    Description: Published
    Description: 1115
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Fogo volcano ; lava flow inflation ; lava tubes ; time averaged discharge rate ; magma supply rate ; volcanic hazard ; remote sensing monitoring ; effusive eruption
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-09-16
    Description: Between 28 March and 1 April 2020, Stromboli volcano erupted, with overflows from the NE crater rim spreading along the barren Sciara del Fuoco slope and reaching the sea along the NW coast of the island. Poor weather conditions did not allow a detailed observation of the crater zone through the cameras monitoring network, but a clear view of the lower slope and the flows expanding in the area allowed us to characterize the flow features. This evidence was integrated with satellite, GBInSAR, and seismic data, thus enabling a reconstruction of the whole volcanic event, which involved several small collapses of the summit cone and the generation of pyroclastic density currents (PDCs) spreading along the slope and on the sea surface. Satellite monitoring allowed for the mapping of the lava flow field and the quantification of the erupted volume, and GBInSAR continuous measurements detected the crater widening and the deflation of the summit cone caused by the last overflow. The characterization of the seismicity made it possible to identify the signals that are associated with the propagation of PDCs along the volcano flank and, for the first time, to recognize the signal that is produced by the impact of the PDCs on the coast.
    Description: This work has been financially supported by the “Presidenza del Consiglio dei Ministri—Dipartimento della Protezione Civile” (Presidency of the Council of Ministers–Department of Civil Protection) (DPC-UNIFI Agreement 2019–2021; Scientific Responsibility: N.C.); this publication, however, does not necessarily reflect the position and the official policies of the Department. Additional funds for paper publication have been provided by INGV-OE.
    Description: Published
    Description: 3010
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Stromboli ; Volcanic hazard ; Volcanic hazard assessment ; Multidisciplinary data integration ; Stromboli Volcano monitoring ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-22
    Description: Low elevation flank eruptions represent highly hazardous events due to their location near, or in, communities. Their potentially high effusion rates can feed fast moving lava flows that enter populated areas with little time for warning or evacuation, as was the case at Nyiragongo in 1977. The January–March 1974 eruption on the western flank of Mount Etna, Italy, was a low elevation effusive event, but with low effusion rates. It consisted of two eruptive phases, separated by 23 days of quiescence, and produced two lava flow fields. We describe the different properties of the two lava flow fields through structural and morphological analyses using UAV-based photogrammetry, plus textural and rheological analyses of samples. Phase I produced lower density (∼2,210 kg m−3) and crystallinity (∼37%) lavas at higher eruption temperatures (∼1,080°C), forming thinner (2–3 m) flow units with less-well-developed channels than Phase II. Although Phase II involved an identical source magma, it had higher densities (∼2,425 kg m−3) and crystallinities (∼40%), and lower eruption temperatures (∼1,030°C), forming thicker (5 m) flow units with well-formed channels. These contrasting properties were associated with distinct rheologies, Phase I lavas having lower viscosities (∼103 Pa s) than Phase II (∼105 Pa s). Effusion rates were higher during Phase I (≥5 m3/s), but the episodic, short-lived nature of each lava flow emplacement event meant that flows were volume-limited and short (≤1.5 km). Phase II effusion rates were lower (≤4 m3/s), but sustained effusion led to flow units that could still extend 1.3 km, although volume limits resulted from levee failure and flow avulsion to form new channels high in the lava flow system. We present a petrologically-based model whereby a similar magma fed both phases, but slower ascent during Phase II may have led to greater degrees of degassing resulting in higher cooling-induced densities and crystallinities, as well as lower temperatures. We thus define a low effusion rate end- member scenario for low elevation effusive events, revealing that such events are not necessarily of high effusion rate and velocity, as in the catastrophic event scenarios of Etna 1669 or Kilauea 2018.
    Description: This research was financed by the Agence Nationale de la Recherche through the project LAVA (Program: DS0902 2016; Project: ANR-16 CE39-0009). This is ClerVolc publication 443 and ANR-LAVA publication 16.
    Description: Published
    Description: 590411
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Mount Etna ; Low flank eruptions ; lava flow morphology ; volume- limited flow ; volcanic hazards ; effusion rate ; Etna volcano, flank eruption
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-01-27
    Description: When teaching at a non-English language universi- ty, we often argue that because English is the international language, students need to become familiar with English terms, even if the bulk of the class is in the native language. However, to make the meaning of the terms clear, a translation into the native language is always useful. Correct translation of terminology is even more crucial for emergency managers and decision makers who can be confronted with a confusing and inconsistently applied mix of terminology. Thus, it is im- perative to have a translation that appropriately converts the meaning of a term, while being grammatically and lexicologically correct, before the need for use. If terms are not consistently defined across all languages following indus- try standards and norms, what one person believes to be a dog, to another is a cat. However, definitions and translations of English scientific and technical terms are not always available, and language is constantly evolving. We live and work in an international world where English is the common language of multi-cultural exchange. As a result, while finding the correct translation can be difficult because we are too used to the English language terms, translated equivalents that are avail- able may not have been through the peer review process. We have explored this issue by discussing grammatically and lexicologically correct French, German, Icelandic, Indonesian, Italian, Portuguese, Russian, Spanish, and Japanese versions for terms involved in communicating effu- sive eruption intensity.
    Description: This is ANR-LAVA contribution no. 2.
    Description: Published
    Description: 57
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: volcanology ; communication ; teaching ; translation ; Translations of volcanological terms ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-12-03
    Description: Volcanic plume height is a key parameter in retrieving plume ascent and dispersal dynamics, as well as eruption intensity; all of which are crucial for assessing hazards to aircraft operations. One way to retrieve cloud height is the shadow technique. This uses shadows cast on the ground and the sun geometry to calculate cloud height. This technique has, however, not been frequently used, especially not with high-spatial resolution (30 m pixel) satellite data. On 26 October 2013, Mt Etna (Sicily, Italy) produced a lava fountain feeding an ash plume that drifted SW and through the approach routes to Catania international airport. We compared the proximal plume height time-series obtained from fixed monitoring cameras with data retrieved from a Landsat-8 Operational Land Imager image, with results being in good agreement. The application of the shadow technique to a single high-spatial resolution image allowed us to fully document the ascent and dispersion history of the plume–cloud system. We managed to do this over a distance of 60 km and a time period of 50 min, with a precision of a few seconds and vertical error on plume altitude of ±200 m. We converted height with distance to height with time using the plume dispersion velocity, defining a bent-over plume that settled to a neutral buoyancy level with distance. Potentially, the shadow technique defined here allows downwind plume height profiles and mass discharge rate time series to be built over distances of up to 260 km and periods of 24 h, depending on vent location in the image, wind speed, and direction.
    Description: This research was funded by CNES-TOSCA (Terre Solide), grant number 10 3703 “Integration of sample return data and remote sensing for advanced understanding of volcanic ash formation and dispersion” (PI: Lucia Gurioli).
    Description: Published
    Description: id 3951
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Mt Etna ; Paroxysmal explosive activity ; Ash plume extension ; Satellite imaging ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Active lava lakes represent the uppermost portion of a volume of convective magma exposed to the atmosphere, and provide open windows on magma dynamics within shallow reservoirs. Erta 'Ale volcano located within the Danakil Depression in Ethiopia, hosts one of the few permanent convecting lava lakes, active at least since the last century. We report here the main features of Erta 'Ale lake surface investigated using a handheld infrared thermal camera between 11 and 12 November 2006. In both days, the lake surface was mainly characterized by efficient magma circulation reflecting in the formation of well-marked incandescent cracks and wide crust plates. These crossed the lake from the upwelling to the downwelling margin with mean speeds ranging between 0.01 and 0.15 m s-1. Hot spots opened eventually in the middle of crust plates and/or along cracks. These produced explosive activity lasting commonly between ~10 and 200 s. Apparent temperatures at cracks ranged between ~700 and 1070˚C, and between ~300 and 500˚C at crust plates. Radiative power output of the lake varied between ~45 and 76 MW according to the superficial activity and continuous resurfacing of the lake. Time series analysis of the radiant power output data reveals cyclicity with a period of ~10 min. The combination of visual and thermal observations with apparent mean temperatures and convection rates allows us to interpret these signals as the periodic release of hot overpressured gas bubbles at the lake surface.
    Description: Published
    Description: Wien
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: open
    Keywords: Erta 'Ale, lava lake, thermal imaging, lava lake features, ; radiant power output ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-05-29
    Description: During an eruption, time scales of topographic change are fast and involve vertical and planimetric evolution of millimeters to meters as the event progresses. Repeat production of high spatial resolution terrain models of lava flow fields over time scales of a few hours is thus a high-value capability in tracking the buildup of the deposit. Among the wide range of terrestrial and aerial methods available to collect such topographic data, the use of an unmanned aerial vehicle (UAV) as an acquisition platform, together with structure from motion (SfM) photogrammetry, has become especially useful. This approach allows high-frequency production of centimeter-scale terrain models over kilometer-scale areas, including dangerous and inaccessible zones, with low cost and minimal hazard to personnel. This study presents the application of such an integrated UAV-SfM method to generate a high spatial resolution digital terrain model and orthomosaic of Mount Etna’s January–February 1974 lava flow field. The SfM method, applied to images acquired using a UAV platform, enabled the extraction of a very high spatial resolution (20 cm) digital elevation model and the generation of a 3-cm orthomosaic covering an area of 1.35 km2. This spatial resolution enabled us to analyze the morphology of sub-meter-scale features, such as folds, blocks, and cracks, over kilometer-scale areas. The 3-cm orthomosaic allowed us to further push the analysis to centimeter-scale grain size distribution of the lava surface. Using these data, we define three types of crust structure and relate them to positions within a channel-fed ʻaʻā flow system. These crust structures are (i) flow parallel shear lines, (ii) raft zones, and (iii) folded zones. Flow parallel shear lines are found at the channel edges, and are 2-m-wide and 0.25-m-deep zones running along the levee base and in which cracking is intense. They result from intense shearing between the moving channel lava and the static levee lava. In zones where initial levees are just beginning to form, these subtle features are the only marker that delimits the moving lava from the stagnant marginal lava. Rafts generally form as the system changes from a stable to a transitional channel regime. Over this 170-m-long zone, the channel broadens from 8 to 70 m and rafts are characterized by topographically higher and poorly cracked areas, surrounded by lower, heavily cracked areas. We interpret the rafts as forming due to breakup of crust zones, previously moving in a coherent manner in the narrow proximal channel reach. Folded zones involve arcuate, cross-flow ridges with their apexes pointing down-flow, where ridges have relatively small clasts and depressions are of coarser-grained breccia. Our folds have wavelengths of 10 m and amplitudes of 1 m; are found towards the flow front, down-flow of the raft zones; and are associated with piling up of lava behind a static or slowly moving flow front. The very high spatial resolution topographic data available from UAV-SfM allow us to resolve surfaces where roughness has a vertical and horizontal scale of variation that is less than 1 m. This is the case over pāhoehoe and ʻaʻā flow surfaces, and thus allows us to explore those new structures that are only apparent in the sub-metric data. Moreover, during future eruptions, the possibility to acquire such information in near-real time will allow a prompt analysis of developing lava flow fields and structures therein, such as developing lava channel systems, so as to contribute to timely hazard assessment, modeling, and projections.
    Description: Published
    Description: 29
    Description: 1V. Storia eruttiva
    Description: 3V. Proprietà dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Keywords: Unmanned aerial vehicle (UAV) ; Structure from motion (SfM) ; Digital elevation model (DEM) ; Etna 1974 eruption ; Lava flow
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...