GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-05-12
    Keywords: Agassiz_IceCap; Area/locality; Baffin Island; Barnes_IceCap; Continuous-flow mass spectrometry; Elevation of event; Ellesmere Island, Canadian Arctic Archipelago; Event label; ICEM; Ice measurement; Ice type; Nitrogen/Argon ratio; Oxygen/Argon ratio; Site; δ15N, gas; δ18O, gas
    Type: Dataset
    Format: text/tab-separated-values, 164 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-05-12
    Keywords: Aklavik_Plateau; Area/locality; British Mountains, northern Yukon Territory; Continuous-flow mass spectrometry; Elevation of event; Event label; Firth_River; ICEM; Ice measurement; Ice type; Latitude of event; Longitude of event; Nitrogen/Argon ratio; Northern Québec; Nunavik; Oxygen/Argon ratio; Richardson Mountains; Site; δ15N, gas; δ18O, gas
    Type: Dataset
    Format: text/tab-separated-values, 112 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Cardyn, Raphaelle; Clark, Ian D; Lacelle, Denis; Lauriol, Bernard; Zdanowicz, Christian; Calmels, Fabrice (2007): Molar gas ratios of air entrapped in ice: A new tool to determine the origin of relict massive ground ice bodies in permafrost. Quaternary Research, 68(2), 239-248, https://doi.org/10.1016/j.yqres.2007.05.003
    Publication Date: 2023-12-13
    Description: The molar ratios of atmospheric gases change during dissolution in water due to differences in their relative solubilities. We exploited this characteristic to develop a tool to clarify the origin of ice formations in permafrost regions. Extracted from ice, molar gas ratios can distinguish buried glacier ice from intrasedimental ground ice formed by freezing groundwaters. An extraction line was built to isolate gases from ice by melting and trapping with liquid He, followed by analysis of N2, O2, Ar, 18O-O2 and 15N-N2, by continuous flow mass spectrometry. The method was tested using glacier ice, aufeis ice (river icing) and intrasedimental ground ice from sites in the Canadian Arctic. O2/Ar and N2/Ar ratios clearly distinguish between atmospheric gas in glacial ice and gases from intrasedimental ground ice, which are exsolved from freezing water. 615NN2 and 618OO2 in glacier ice, aufeis ice and intrasedimental ground ice do not show clear distinguishing trends as they are affected by various physical processes during formation such as gravitational settling, excess air addition, mixing with snow pack, and respiration.
    Keywords: International Polar Year (2007-2008); IPY
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-14
    Description: Warming in the Arctic causes strong environmental changes with permafrost degradation being among the most striking effects. Active layer deepening and permafrost erosion can result in the mobilization and lateral transport of organic carbon (OC), which potentially alters carbon cycles in the Arctic substantially. Although the understanding of ground ice contents and permafrost OC release is improving, still little is known of permafrost OC release rates, lateral transport pathways and its driving mechanisms on a landscape scale. In this study we investigate ground ice characteristics and OC composition of the most dominant landscape units of the Yukon coastal plain. In total, 12 permafrost cores were taken from moraine, lacustrine, fluvial and glaciofluvial deposits with a SIPRE corer. Ground ice and sediment contents were analysed using computed tomography and k-means classification. Active layer and upper permafrost were subsampled to analyse OC contents and isotopes of bulk material and a leaching-incubation experiment was conducted with active layer and permafrost sediments to assess potential dissolved OC export and degradation rates. Preliminary results show that ground ice contents vary significantly between landscape units. Ground ice contents in permafrost average 72.4 vol.-% with highest contents in moraines (78.3 vol.-%) and lowest contents in fluvial deposits (53.2 vol.-%). We expect highest dissolved OC leaching and loss rates from permafrost in contrast to active layer and from fluvial and lacustrine deposits, as they simply contain more OC. Yet, lateral OC transport is more likely for landscapes with a topographic gradient such as ground ice-rich moraines. We conclude that due to the high ground ice contents on the Yukon coastal plain, substantial changes of the permafrost landscape will occur under current warming trends. This will include subsidence, abrupt erosion, changes in hydrology and OC degradation processes, which will differ between landscape units.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Laboratoire EDYTEM - Université Savoie Mont Blanc
    In:  EPIC35th European Conference on Permafrost, Chamonix Mont-Blanc, France, 2018-06-23-2018-07-01Le Bourget du Lac cedex, Laboratoire EDYTEM - Université Savoie Mont Blanc
    Publication Date: 2018-07-05
    Description: Yedoma deposits developed from the syngenetic accumulation and freezing of organic-rich and ice-rich sediments during the Late Pleistocene over vast portions of Siberia, Alaska and Yukon Territory. Cryostratigraphic investigations revealed the presence of a yedoma deposit in the Beaver Creek area of south-western Yukon. The Beaver Creek area was not glaciated during the last glacial advance and the cryostratigraphic record comprises Middle Wisconsinian up to Holocene deposits covering the Mirror Creek disintegration moraine. Reworking of glacial deposits by alluvial and solifluction processes and peat accumulation in the depression of the hummocky moraine likely occurred during the Middle Wisconsinian period and was followed during the Late Wisconsinian by the yedoma build-up. A major thaw event interrupted the syngenetic permafrost aggradation which eventually resumed as attested by the upward growth of ice wedges.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  EPIC3EGU General Assembly 2022, Vienna, Austria, 2022-05-23-2022-05-27Landscape-related ground ice variability on the Yukon coastal plain inferred from computed tomography and remote sensing
    Publication Date: 2022-10-04
    Description: Warming in the Arctic causes strong environmental changes with degradation of permafrost (permanently frozen ground). Active layer deepening (gradual thaw) and permafrost erosion (abrupt thaw) results in the mobilization and lateral transport of organic carbon, altering current carbon cycling in the Arctic. Ground ice content is a crucial factor limiting our understanding and ability to determine the rates and dynamics of permafrost thaw and its impact on potential thaw subsidence rates, changes in lateral hydrological pathways and its driving mechanisms on a landscape scale. In this study we investigate ground ice content and its characteristics across the most dominant landscape units of the Yukon coastal plain (Canadian Arctic), using two spatially and technically contrasting approaches. In our bottom-up approach, twelve permafrost cores were collected from moraine, lacustrine, fluvial and glaciofluvial deposits using a SIPRE corer (mean drilling depth of 2 m) in spring of 2019. Ground ice and sediment contents within polygon centers were analyzed and classified using computed tomography and image recognition software (k-means). Our top-down approach quantified ice-wedge volumes from remote sensing imagery tracing the circumference of polygon troughs over the same area. Preliminary results - extrapolated to the entire coastal plain - show that the ground-ice content in polygon centers vary significantly from massive ice in the polygon troughs (wedge-ice). Total ice volume was estimated around 80.2 vol.-%, of which 68.2 ± 18.1 vol.-% was attributed to ground ice in polygon centers, and 12 ± 3.1 vol.-% of the landscape is massive ice in wedge-ice along polygon troughs. Additionally, differences among and between landscape units are also substantial, with highest ice volume contents in moraines landscapes, where polygon centers contain 58.8 vol.-% ground ice and wedge-ice volume is 16.2 vol.-%), while the lowest ice contents are found in glacio-fluvial deposits (22.1 vol.-% resp. 9.1 vol.-%). Our results reveal a higher average and a larger variability in ground ice contents than previously found, suggesting a need of both ground-based measurements and remote sensing imagery to further our understanding of the future landscape subsidence, but also to avoid a likely under- or overestimation associated with the chosen approach. We conclude that due to the high ground ice contents on the Yukon coastal plain, substantial changes of the permafrost landscape will occur under current warming trends. These will include subsidence, abrupt erosion, changes in hydrology and organic carbon mobilization, degradation and export processes, which will differ between landscape units.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...