GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :American Geophysical Union,
    Keywords: Chemical oceanography--Indian Ocean. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (438 pages)
    Edition: 1st ed.
    ISBN: 9781118671665
    Series Statement: Geophysical Monograph Series ; v.185
    DDC: 551.46/615
    Language: English
    Note: Cover -- Title Page -- Contents -- Preface -- Introduction to Indian Ocean Biogeochemical Processes and Ecological Variability: Current Understanding and Emerging Perspective -- Biophysical Processes in the Indian Ocean -- What Drives the Biological Productivity of the Northern Indian Ocean? -- Monsoons, Islands, and Eddies: Their Effects on Phytoplankton in the Indian Ocean -- Impact of Physical Processes on Chlorophyll Distribution in the Bay of Bengal -- Wintertime Convection and Ventilation of the Upper Pycnocline in the Northernmost Arabian Sea -- Grazing Processes and Secondary Production in the Arabian Sea: A Simple Food Web Synthesis With Measurement Constraints -- Physical and Biogeochemical Controls of the Phytoplankton Seasonal Cycle in the Indian Ocean: A Modeling Study -- Dinitrogen Fixation in the Indian Ocean -- Nitrous Oxide in the Indian Ocean -- Dissolved Organic Carbon in the Carbon Cycle of the Indian Ocean -- Challenges for Present and Future Estimates of Anthropogenic Carbon in the Indian Ocean -- Net Community Production in the Northern Indian Ocean -- Impact of Regional Indian Ocean Characteristics on the Biogeochemical Variability of Settling Particles -- Carbon Cycling in the Mesopelagic Zone of the Central Arabian Sea: Results From a Simple Model -- Rates and Regulation of Microbially Mediated Aerobic and Anaerobic Carbon Oxidation Reactions in Continental Margin Sediments Fr -- Is δ15N of Sedimentary Organic Matter a Good Proxy for Paleodenitrification in Coastal Waters of the Eastern Arabian Sea? -- Seasonal Anoxia Over the Western Indian Continental Shelf -- Unusual Blooms of the Green Noctiluca miliaris (Dinophyceae) in the Arabian Sea During the Winter Monsoon -- Monsoonal and ENSO Impacts on Particle Fluxes and the Biological Pump in the Indian Ocean. , Basin-Wide Modification of Dynamical and Biogeochemical Processes by the Positive Phaseof the Indian Ocean Dipole During the SeaWiFS Era -- Indian Ocean Research: Opportunities and Challenges -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Oceanography
    Type of Medium: Book
    Pages: XVII, 1062 S , Ill., graph. Darst., Kt
    ISBN: 0471115452
    Series Statement: The sea : ideas and observations on progress in the study of the seas / ed. board M. N. Hill; Allan R. Robinson ... Vol. 11
    DDC: 551.46
    Language: English
    Note: Literaturangaben
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Aufsatzsammlung ; Küstenmeer ; Meeresgeologie ; Küstenmeer ; Meer ; Küste ; Küstengebiet ; Meeresgeologie ; Meereskunde
    Type of Medium: Book
    Pages: XIII, 604 S , Ill., graph. Darst., Kt
    ISBN: 0471115444
    Series Statement: The sea : ideas and observations on progress in the study of the seas / ed. board M. N. Hill; Vol. 10
    DDC: 551.46
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Deep Sea Research Part I: Oceanographic Research Papers, Elsevier, 84, pp. 110-126, ISSN: 0967-0637
    Publication Date: 2014-04-04
    Description: Data from seven moorings deployed across the East Greenland shelfbreak and slope 280 km downstream of Denmark Strait are used to investigate the characteristics and dynamics of Denmark Strait Overflow Water (DSOW) cyclones. On average, a cyclone passes the mooring array every other day near the 900 m isobath, dominating the variability of the boundary current system. There is considerable variation in both the frequency and location of the cyclones on the slope, but no apparent seasonality. Using the year-long data set from September 2007 to October 2008, we construct a composite DSOW cyclone that reveals the average scales of the features. The composite cyclone consists of a lens of dense overflow water on the bottom, up to 300 m thick, with cyclonic flow above the lens. The azimuthal flow is intensified in the middle and upper part of the water column and has the shape of a Gaussian eddy with a peak depth-mean speed of 0.22 m/s at a radius of 7.8 km. The lens is advected by the mean flow of 0.27 m/s and self propagates at 0.45 m/s, consistent with the topographic Rossby wave speed and the Nof speed. The total translation velocity along the East Greenland slope is 0.72 m/s. The self-propagation speed exceeds the cyclonic swirl speed, indicating that the azimuthal flow cannot kinematically trap fluid in the water column above the lens. This implies that the dense water anomaly and the cyclonic swirl velocity are dynamically linked, in line with previous theory. Satellite sea surface temperature (SST) data are investigated to study the surface expression of the cyclones. Disturbances to the SST field are found to propagate less quickly than the in-situ DSOW cyclones, raising the possibility that the propagation of the SST signatures is not directly associated with the cyclones.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 33 (2006): L13608, doi:10.1029/2006GL026311.
    Description: Austral winter oceanographic measurements from the northwest Australian continental shelf reveal salty water forming evaporatively inshore, moving across the wide shelf near the bottom and into the adjacent open ocean when the shelf edge alongshore flow is equatorward. The salt tongue is absent during more normal conditions, when the poleward Leeuwin Current is present. We hypothesize that the flow reversal enables shelf-wide bottom boundary layer (Ekman) transport and thus creates the shelf-edge convergence that accounts for the observed salt tongue. This flow is absent under sustained normal conditions because of buoyancy arrest in the bottom boundary layer.
    Description: This research was supported by the Processes and Prediction Division (Code 322 PO) of the U.S. Office of Naval Research through grant N00014-02-1-0767.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C08012, doi:10.1029/2012JC008016.
    Description: Analysis of sea surface temperature (SST) from coastal buoys suggests that the summertime over-shelf water temperature off the U.S. West Coast has been declining during the past 30 years at an average rate of −0.19°C decade−1. This cooling trend manifests itself more strongly off south-central California than off Oregon and northern California. The variability and trend in the upwelling north of off San Francisco are positively correlated with those of the equatorward wind, indicating a role of offshore Ekman transport in the north. In contrast, Ekman pumping associated with wind stress curls better explains the stronger and statistically more significant cooling trend in the south. While the coast-wide variability and trend in SST are strongly correlated with those of large-scale modes of climate variability, they in general fail to explain the southward intensification of the trend in SST and wind stress curl. This result suggests that the local wind stress curl, often topographically forced, may have played a role in the upwelling trend pattern.
    Description: H.S. acknowledges the WHOI supports from the Coastal Research Fund in Support of Scientific Staff, the Penzance Endowed Fund in Support of Assistant Scientists, and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research. K.B. and C.E. acknowledge support by the National Science Foundation through grants OCE-1059632 and OCE 1061434.
    Description: 2013-03-09
    Keywords: Coastal upwelling ; Multidecadal trend ; Wind stress curl
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Dynamics of Atmospheres and Oceans 41 (2006): 172-190, doi:10.1016/j.dynatmoce.2006.05.001.
    Description: Coastal-trapped waves with finite-amplitude bottom friction are explored. “Finite-amplitude” in this context means that the bottom stresses are large enough to change the wave modal structure. The importance of bottom friction is measured by the nondimensional number r/(ωh), where r is a bottom resistance coefficient, ω is the wave frequency and h is the water depth. Increasing bottom drag causes free wave modes to adjust by having their amplitude maxima for alongshore current translate offshore to the point that, with relatively large bottom stress, the alongshore current variance is trapped entirely on the slope, even though pressure variations remain substantial right up to the coast. In conjunction with these adjustments, wave frequency, hence propagation speed, varies and the wave damping is usually less than would be expected based on a weak-friction perturbation calculation. Stronger density stratification increases wave damping, all else being the same. A mean alongshore flow can strongly affect modal structure and wave damping, although general trends are difficult to discern. Results suggest that bottom friction may cause an observed tendency for lower frequency alongshore current fluctuations to become relatively more important with distance offshore.
    Description: This work was supported by National Science Foundation grant number OCE02-27679.
    Keywords: Coastal-trapped waves ; Bottom friction
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 559917 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Annual Reviews for personal use, not for redistribution. The definitive version was published in Annual Review of Marine Science 8 (2016): 59-78, doi:10.1146/annurev-marine-010814-015717.
    Description: Cross-shelf exchange dominates the pathways and rates by which nutrients, biota and materials on the continental shelf are delivered and removed. These transports are limited by Earth’s rotation, which inhibits flow from crossing isobaths. Thus, cross-shelf transports are generally weak compared to alongshore flows, and this leads to interesting observational issues. Cross-shelf flows are enabled by turbulent mixing processes, by nonlinear processes (such as momentum advection), and by time-dependence. Thus, there is a wide range of possible effects that can allow these critical transports, and different natural settings are often governed by differing mixes of processes. Examples of representative transport mechanisms are discussed, and possible observational and theoretical paths to future progress are explored.
    Description: Support from the National Science Foundation Physical Oceanography program, through grant OCE-1433953, and the Biological Oceanography program through grant OCE-1258667
    Keywords: Coastal physical oceanography ; Turbulent boundary layers ; Coastal instabilities ; Nutrient supplies ; Wind forcing
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: CoOP (Coastal Ocean Processes) is an organization meant to study major interdisciplinary scientific problems in the coastal ocean. Its goal is "to obtain a new level of quantitative understanding of the processes that dominate the transformations, transport and fates of biologically, chemically and geologically important matter on the continental margin". Central to obtaining this understanding will be advances in observing and modeling the cross-shelf component of transport. More specific objectives are to understand 1) cross-margin exchanges, 2) air sea exchanges, 3) benthic-pelagic exchanges, 4) terrestrial inputs and 5) biological and chemical transformations within the water column. CoOP research will be carried out primarly through a series of process-oriented field studies, each involving about two years of measurements. Each of these field studies is to be initiated and defined through a community workshop. In addition to the process studies, CoOP will also involve modeling, long time series, exploratory studies, remote sensing, technological innovation, data archiving and communications. A CoOP pilot study has been approved for funding by the National Science Foundation, and funding will begin in 1992. The CoOP science effort is thus already underway.
    Description: Funding was provided by the National Science Foundation under Grant No. OCE-9108993.
    Keywords: Coastal oceanography ; Coastal meteorology ; Continental shelf
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 9125740 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © Oceanography Society, 2008. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 21, 4 (2008): 18-21.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...