GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (539 pages)
    ISBN: 9783527838813
    Language: English
    Note: Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Editors -- Part I Chemically Modified Carbon Nanotubes: Overview, Commercialization, and Economic Aspects -- Chapter 1 A Detailed Study on Carbon Nanotubes: Properties, Synthesis, and Characterization -- 1.1 Introduction -- 1.2 Evolution of Carbon: Graphite to CNTs -- 1.2.1 Graphite -- 1.2.2 Diamond -- 1.2.3 Graphene -- 1.2.3.1 Direct Lattice -- 1.2.3.2 The Reciprocal Lattice -- 1.2.4 Carbon Nanotubes -- 1.2.4.1 SWNTs: Types and Structure -- 1.2.4.2 Chirality -- 1.2.4.3 Electronic Properties of CNTs -- 1.2.4.4 Optical Properties of CNTs -- 1.2.4.5 Chemical Properties of CNTs -- 1.2.4.6 Defects in CNTs -- 1.2.4.7 CNTs Properties Modification by Chemical Functionalization Process -- 1.2.4.8 Applications of CNTs -- 1.2.4.9 Synthesis of CNTs -- 1.2.4.10 Analysis of CNTs by Raman Spectroscopy -- 1.3 Conclusion -- Declaration of Competing Interest -- Companies Dealing with Chemically Modified CNTs -- Acknowledgments -- References -- Chapter 2 Surface Modification Strategies for the Carbon Nanotubes -- 2.1 Introduction -- 2.2 Classification of Carbon Nanotubes and Their Fabrication -- 2.2.1 Arc‐Discharge Method -- 2.2.2 Laser Vapor Deposition -- 2.2.3 Chemical Vapor Deposition (CVD) -- 2.3 Purification of CNTs -- 2.4 Surface Modification of CNTs -- 2.4.1 Methods of Functionalization -- 2.4.2 Noncovalent Functionalization -- 2.4.3 Covalent (Chemical) Functionalization -- 2.4.3.1 Defect‐Group Functionalization -- 2.4.3.2 Sidewall Functionalization -- 2.4.3.3 CNTs Functionalized with Polymer -- 2.4.3.4 CNTs Functionalized with Biomolecules -- 2.4.3.5 CNTs Functionalization with Ionic Liquid (ILs) -- 2.4.3.6 Plasma Activated CNTs -- 2.5 Characterization of CNTs -- 2.6 Conclusion -- References. , Chapter 3 Latest Developments in Commercial Scale Fabrications for Chemically Modified Carbon Nanotubes -- Abbreviations -- 3.1 Introduction -- 3.2 Industrial Scale Fabrication Strategies -- 3.2.1 Basic Chemical Vapor Deposition (CVD) Process -- 3.2.1.1 Industrial Level Fabrication of CNT Through Various CVD Methods -- 3.2.1.2 High‐Pressure Chemical Vapor Deposition -- 3.2.1.3 Atmospheric‐Pressure Chemical Vapor Deposition (APCVD) -- 3.2.1.4 Low‐Pressure Chemical Vapor Deposition (LPCVD) -- 3.3 CVD on the Basis of Reactor Wall Temperature -- 3.3.1 Hot‐Wall Chemical Vapor Deposition (Hot‐Wall CVD) -- 3.3.2 Cold‐Wall Chemical Vapor Deposition (Cold‐Wall CVD) -- 3.4 Arc‐Discharge -- 3.5 Laser Vaporization -- 3.6 Other Synthesis Methods -- 3.7 Applications -- 3.7.1 Transistors -- 3.7.2 Conductor -- 3.7.3 Composites -- 3.7.4 Aerogels -- 3.8 Future Scope -- 3.9 Conclusion -- Conflict of Interest -- Other Sources -- Acknowledgments -- References -- Chapter 4 Economical Uses of Chemically Modified Carbon Nanotubes -- 4.1 Introduction -- 4.2 Properties of Carbon Nanotubes -- 4.3 Synthesis of Carbon Nanotubes -- 4.4 Functionalization of Carbon Nanotubes -- 4.5 Characterization/Analysis of Functionalized Carbon Nanotubes -- 4.6 Economy of Carbon Nanotubes -- 4.7 Economic Importance of Carbon Nanotubes -- 4.8 Hydrogen Fuel Cells -- 4.9 Water Splitting -- 4.10 Dye‐Sensitized Solar Cells -- 4.11 Quantum Dot Solar Cells -- 4.12 Silicon‐Based Solar Cells -- 4.13 Thermoelectric Fabrics -- 4.14 Cost of Carbon Nanotubes -- 4.15 Globalization of Carbon Nanotubes -- 4.16 Conclusion -- References -- Part II Chemically Modified Carbon Nanotubes: Energy and Environment Applications -- Chapter 5 Chemically Modified Carbon Nanotubes in Energy Production and Storage -- Abbreviations -- 5.1 Introduction -- 5.2 Production of Carbon Nanotubes. , 5.3 History of Energy Storage Devices and Materials -- 5.4 Carbon Nanotubes for Energy Storage -- 5.4.1 Carbon Nanotube Hybrid for Lithium‐Metal Batteries -- 5.4.2 Wearable Energy Storage with Fiberic Carbon Nanotube -- 5.4.3 Carbon Nanotube Hybrid for Supercapacitor Energy Storage -- 5.4.4 Carbon Nanotubes/Biochar for Energy Storage -- 5.5 Present and Future of Carbon Nanotubes -- 5.6 Commercial‐Scale Application of Chemically Modified CNTs for Energy Storage -- 5.7 Companies Produced CNTs for the Application of Chemically Modified Carbon Nanotubes for Energy Storage -- References -- Chapter 6 Chemically Modified Carbon Nanotubes for Pollutants Adsorption -- 6.1 Introduction -- 6.2 Chemically Modified CNTs -- 6.3 Chemically Modified CNTs for Adsorptive Removal of Pollutants -- 6.3.1 Organic Dyes -- 6.3.2 Removal of Pharmaceuticals -- 6.3.3 Other Organic Pollutants -- 6.3.4 Metal Ions -- 6.4 Influencing Factors -- 6.5 Adsorption Mechanisms of Chemically Modified CNTs -- 6.6 Modified CNT‐Based Materials Toward Commercialization -- 6.7 Conclusion and Future Perspectives -- Acknowledgments -- References -- Chapter 7 Chemically Modified Carbon Nanotubes in Removal of Textiles Effluents -- 7.1 Introduction -- 7.2 History of Removal of Textiles Effluents -- 7.3 Chemically Modified Carbon Nanotubes -- 7.3.1 Chemical Properties -- 7.3.2 Modification Through Chemical Reduction of Diazonium Salts -- 7.4 Dyes Removal Techniques -- 7.5 Adsorption -- 7.6 Carbon‐Based Nanoadsorbents -- 7.7 Carbon Nanotubes -- 7.8 Carbon Nanotubes as an Adsorption of Dye Molecules -- 7.9 Industrial Application of Synthetic Dyes -- 7.10 Conclusion -- Acknowledgment -- References -- Chapter 8 Chemically Modified Carbon Nanotubes in Membrane Separation -- 8.1 Introduction -- 8.2 Carbon Nanotubes (CNTs) Overview -- 8.3 Method of Synthesis of Carbon Nanotube (CNT) -- 8.3.1 Arc Discharge. , 8.3.2 Laser Ablation -- 8.3.3 Chemical Vapor Deposition (CVD) -- 8.3.4 Hydrothermal -- 8.3.5 Electrolysis -- 8.4 Fabrication Methods of CNTs -- 8.4.1 Fabrication of CNT‐Reinforced Metal Matrix Composites (CNT‐MMCs) -- 8.4.2 Microwave‐Assisted Fabrication of CNTs -- 8.5 Functionalization of CNTs -- 8.6 Chemically Modified Derivatization of CNTs -- 8.6.1 Electrochemically Assisted Covalent Modification -- 8.7 Polymer Grafting -- 8.8 Carbon Nanotubes Enhanced with Nanoparticles -- 8.9 Advantages of CNTs -- 8.10 Challenges in CNTs -- 8.11 Applications of CNTs as Membrane Separation -- 8.11.1 Water Treatment -- 8.11.2 Air Filtration -- 8.11.3 Energy Storage: Capacitors and Batteries -- 8.11.4 Electrochemical Separation and Catalysis -- 8.11.5 Electronic Devices Fabrication -- 8.11.6 Environment -- 8.11.7 Biology and Agriculture -- 8.12 Commercial‐Scale of Chemically Modified CNTs in Membrane Separation -- 8.13 Future Insights -- 8.14 Conclusion -- References -- Chapter 9 Chemically Modified Carbon Nanotubes for Water Purification System -- Abbreviations -- 9.1 Introduction -- 9.2 History of Water Purification Methods -- 9.3 Carbon Nanotubes CNTs Types -- 9.4 Vital of Modification of CNTs -- 9.5 Surface Modified CNTs for Water Purification -- 9.6 Polymer/CNTs Grafting for Water Purification -- 9.7 Bulk Modified CNTs for Water Purification -- 9.8 Important of Carbon Nanotubes for Water Purification -- 9.9 Conclusions and Future Research Directions -- 9.10 Commercial Application of Chemically Modified CNTs in Water Purification -- 9.11 Companies Produced CNTs for the Application of Chemically Modified Carbon Nanotubes for Water Purification System -- References -- Part III Chemically Modified Carbon Nanotubes: Electronic and Electrical Applications -- Chapter 10 Chemically Modified Carbon Nanotubes for Electronics and Photonic Applications. , 10.1 Introduction -- 10.2 Chemical Modifications of CNTs -- 10.2.1 Oxidative Functionalization of CNTs -- 10.2.2 Polymer/Ionic Liquid Modification of Oxidized CNTs -- 10.2.3 Direct Covalent Modification of CNT -- 10.2.4 Heteroatom Doping of CNTs -- 10.2.5 Charge Transfer/Noncovalent Doping of CNTs -- 10.3 Chemically Modified CNTs in Electronics -- 10.3.1 Transistors -- 10.3.2 Rectifying Diodes -- 10.3.3 Bioelectronics -- 10.4 Chemically Modified CNTs in Photonics -- 10.4.1 Organic Photovoltaics (OPV) -- 10.4.2 Organic Light‐Emitting Diodes (OLEDs) -- 10.4.3 Touch Panels -- 10.5 Summary and Future Scope -- References -- Chapter 11 Chemically Modified Carbon Nanotubes for Electrochemical Sensors -- 11.1 Introduction -- 11.2 Functionalization of Carbon Nanotubes Toward Sensors -- 11.2.1 Covalent Functionalization of CNTs Toward Sensing -- 11.2.2 Noncovalent Functionalization of CNTs Toward Sensing -- 11.2.3 Polymers Wrapping of CNTs Toward Sensing -- 11.2.4 CNTs Decorated with Metal Nanoparticles Toward Sensing -- 11.3 Electrochemical Sensing Applications of CNTs -- 11.3.1 CNT‐Based Sensors for Environment Protection -- 11.3.2 CNT‐Based Sensors for Pharmaceutical Applications -- 11.3.3 Monitoring of Biomolecular Compounds -- 11.3.3.1 Glucose Sensor -- 11.3.3.2 DNA Sensor -- 11.3.4 CNTs‐Based Sensors for Real Sample Analysis -- 11.4 Summary and Outlook -- References -- Chapter 12 Chemically Modified Carbon Nanotubes for Lab on Chip Devices -- Abbreviations -- 12.1 Introduction -- 12.2 Allotropes of Carbon -- 12.2.1 Diamond -- 12.2.2 Graphite -- 12.2.3 Fullerenes -- 12.2.4 Carbon Nanotubes -- 12.2.4.1 SWCNT: Various Synthesis Methods -- 12.2.4.2 Growth Catalysts for SWCNT -- 12.2.4.3 Approach of Introducing the Catalyst on SWCNTs (CVD) Growth -- 12.2.5 Double‐Walled Carbon Nanotubes (DWCNTs) -- 12.2.5.1 Development of DWCNTs. , 12.2.5.2 Purification of DWCNTs.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Inorganic compounds-Analysis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (426 pages)
    Edition: 1st ed.
    ISBN: 9780323904117
    DDC: 661
    Language: English
    Note: Front Cover -- Inorganic Anticorrosive Materials -- Copyright Page -- Contents -- List of contributors -- I. Overview on metal oxides -- 1 Nanomaterials as corrosion inhibitors -- 1.1 Introduction -- 1.1.1 Corrosion and its consequences -- 1.1.2 Corrosion inhibition -- 1.2 Nanomaterials -- 1.2.1 General introduction, types, and synthesis methods -- 1.2.1.1 Bottom-up method -- 1.2.1.2 Top-down approach -- 1.2.2 Characterization of nanomaterials -- 1.3 Nanomaterials as anticorrosive materials -- 1.3.1 Metal/metal oxide nanoparticles as corrosion inhibitors -- 1.3.2 Quantum dots as corrosion inhibitors -- 1.3.3 Nanotubes as corrosion inhibitors -- 1.3.4 Nanofibers as corrosion inhibitors -- 1.3.5 Nano containers as corrosion inhibitors -- 1.3.6 Nanocomposites as corrosion inhibitors -- 1.4 Challenges facing the use of nanomaterials as corrosion inhibitors -- 1.4.1 Toxicity -- 1.4.2 Agglomeration -- 1.4.3 Prediction of mechanism -- 1.5 Conclusion -- 1.6 Future research directions -- Useful links -- References -- 2 Metal oxides: Advanced inorganic materials -- 2.1 Outline of chapter -- 2.2 Introduction to metal oxide and its materials -- 2.2.1 Inorganic oxides -- 2.2.2 Metal oxide -- 2.2.3 Mixed metal oxide -- 2.2.4 Nanotechnology -- 2.3 Synthetic methodologies of metal oxides -- 2.3.1 Physical methods -- 2.3.1.1 Physical vapor deposition -- 2.3.1.2 Milling -- 2.3.1.3 Spray pyrolysis -- 2.3.1.4 Laser ablation -- 2.3.1.5 Inert gas condensation -- 2.3.1.6 Arc discharge -- 2.3.1.7 Thermolysis -- 2.3.2 Chemical methods -- 2.3.2.1 Sol-gel method -- 2.3.2.2 Chemical vapor deposition -- 2.3.2.3 Polyol method -- 2.3.2.4 Electrochemical synthesis -- 2.3.2.5 Sonochemical synthesis -- 2.3.3 Green synthesis or biological methods -- 2.3.3.1 Green synthesis using plant extracts -- 2.3.3.2 Green synthesis using microorganisms. , 2.3.3.3 Green synthesis using biomolecules -- 2.4 Fundamental science and properties of nanometal oxide as advanced material -- 2.4.1 Properties of nanoparticulated oxides -- 2.4.1.1 Optical properties-surface plasmon resonance -- 2.4.1.2 Transport properties -- 2.4.1.3 Mechanical properties -- 2.4.1.4 Chemical properties -- 2.4.1.5 Quantum effects -- 2.5 Review of metal oxide nanomaterials used for varied applications in different fields of research -- 2.6 Application, discussion and future claims -- 2.6.1 Environmental and solar applications -- 2.6.2 Corrosion and electrochemical applications -- 2.6.2.1 Corrosion of Steel in Acidic Solution and Inhibition Mechanism -- 2.6.2.2 Mechanism -- 2.6.2.3 Potential with zero charge -- 2.6.2.4 Factors affecting the efficiency of inhibitors -- 2.6.2.4.1 Disperability-nano metal oxide -- 2.6.3 Biomedical applications -- 2.6.3.1 Drug delivery -- 2.7 Conclusion -- References -- 3 Molecularly imprinted magnetite nanomaterials and its application as corrosion inhibitors -- 3.1 Introduction -- 3.1.1 Effects of coating on magnetite by the silica (Fe3O4/SiO2) nanomaterials -- 3.1.2 Molecularly imprinted nanomaterials (Fe3O4/SiO2/Thermosensitive/EDTA) -- 3.1.2.1 Coupling of chitosan on functionalized EDTA graftted thermosensetive modified magnetite molecularly imprinted nanom... -- 3.1.3 General principle of molecularly imprinted nanomaterials -- 3.1.4 Structure of magnetite nanomaterials -- 3.2 Distinctive synthetic approach of molecularly imprinted magnetite nanomaterials -- 3.2.1 Coprecipitation method -- 3.2.2 Reverse micellar method -- 3.2.3 Sonochemical technique -- 3.2.4 Hydrothermal technique -- 3.2.5 Thermal decomposition technique -- 3.2.6 Sol-gel technique -- 3.3 Functionalization of molecularly imprinted magnetite nanoparticles -- 3.3.1 Silica -- 3.3.2 Metal or nonmetal. , 3.3.3 Metal oxides and metal sulfides -- 3.3.4 Coating of organic compounds on the surface of the magnetite nanoparticles -- 3.3.5 Polymers -- 3.3.6 Biological molecules -- 3.4 Characterization techniques -- 3.4.1 XRD analysis -- 3.4.2 Surface morphology and elemental analysis -- 3.4.3 Vibrating sample magnetometer -- 3.4.4 Dynamic light scattering -- 3.5 Conclusions -- Author declaration -- References -- Further reading -- 4 Basics of metal oxides: properties and applications -- 4.1 Introduction -- 4.2 Properties of metal oxide -- 4.3 Application of metal oxides -- 4.3.1 Cupric oxide -- 4.3.2 Zinc oxide (ZnO) -- 4.3.3 Cobolt oxide (II, III)/Co3O4 -- 4.4 Titanium oxide -- 4.5 Conclusion and future directions -- References -- 5 Recent developments in properties and applications of metal oxides -- 5.1 Introduction -- 5.2 Properties of metal oxides nanoparticles -- 5.3 Diverse applications of metal oxides nanoparticles -- 5.3.1 Gas sensing -- 5.3.2 Batteries -- 5.3.3 Solar cells -- 5.4 Supercapacitor -- 5.4.1 Anticorrosive -- 5.4.2 Photocatalysis -- 5.4.3 Basic principle of TiO2 based photocatalysts -- 5.5 Summary -- References -- 6 Functionally integrated metal oxides for corrosion protection -- 6.1 Introduction -- 6.2 Corrosion protection process -- 6.3 Electrochemical characterization and evaluation techniques -- 6.3.1 Open circuit potential -- 6.3.2 Polarization techniques -- 6.3.2.1 Linear polarization resistance -- 6.3.2.2 Potentiodynamic polarization -- 6.3.2.3 Tafel extrapolation method -- 6.3.2.4 Cyclic polarization -- 6.3.3 Electrochemical impedance spectroscopy -- 6.4 Different transition metals and their characteristics -- 6.4.1 Titanium dioxide (TiO2) -- 6.4.2 Zirconium dioxide (ZrO2) -- 6.4.3 Zinc oxide (ZnO) -- 6.4.4 MoO2 and MoO3 -- 6.5 Coating techniques for the synthesis of corrosion protection -- 6.5.1 Physical vapor deposition. , 6.5.2 Chemical vapor deposition -- 6.5.3 Microarc oxidation -- 6.5.4 Electrodeposition coating -- 6.5.5 Sol-gel coating -- 6.5.6 Thermal spray coating -- 6.5.7 High-velocity oxy-fuel coating -- 6.5.8 Plasma spray coating -- 6.6 Factors affecting the efficiency of mixed metal oxide as corrosion protection -- 6.7 Mixed metal oxide coatings studied for corrosion protection -- 6.7.1 TiO2-ZnO -- 6.7.2 TiO2-ZrO2 -- 6.7.3 MoO2-ZrO2, MoO2-TiO2 -- 6.7.4 Early studies for trimetallic oxides ZrO2-ZnO-TiO2 -- 6.8 Summary -- Useful links -- References -- 7 A prospective utilization of metal oxides for self-cleaning and antireflective coatings -- 7.1 Introduction -- 7.1.1 Classification of metal oxides -- 7.1.1.1 Ferroelectric metal oxides -- 7.1.1.2 Magnetic metal oxides -- 7.1.1.3 Multiferroic metal oxides -- 7.1.2 Nanocomposite metal oxides -- 7.1.3 Properties of metal oxides -- 7.2 Electrical and dielectric properties -- 7.3 Electrochemical properties -- 7.3.1 Metal oxides as self-cleaning and antireflective coatings -- 7.3.2 Application of metal oxides -- 7.3.2.1 Biomedical and healthcare -- 7.3.2.2 Solar energy -- 7.3.2.3 Water purification membranes -- 7.3.2.4 Application in machining and automotive -- 7.4 Conclusion -- References -- II. Metal oxides as corrosion inhibitors -- 8 CeO as corrosion inhibitors -- 8.1 An overview -- 8.2 Cerium (IV) oxide as corrosion inhibitor -- 8.3 Utilization of cerium IV oxide as corrosion inhibitor in the past decade -- Useful links -- References -- 9 Utilization of ZnO-based materials as anticorrosive agents: a review -- 9.1 Introduction -- 9.1.1 Corrosion inhibitors and coatings -- 9.2 Properties of ZnO -- 9.2.1 Corrosion resistance of ZnO nanoparticles -- 9.3 Corrosion resistance of ZnO-based corrosion inhibitors -- 9.4 Corrosion resistance of ZnO-based nanocomposite coatings. , 9.5 Corrosion resistance of ZnO/mixed nanocomposites -- 9.6 Conclusion -- Useful links -- References -- 10 MgO as corrosion inhibitor -- 10.1 Introduction -- 10.2 Synthesis, properties and applications of magnesium oxide -- 10.3 Application of MgO and its composites as a corrosion inhibitor for the protection of metallic materials -- 10.4 Application of MgO and its composites as corrosion inhibitors for the protection of magnesium alloy -- 10.5 Application of MgO and its composites as corrosion inhibitors for the protection of iron and its alloys -- 10.6 Application of MgO and its composites as corrosion inhibitors for protection of cemented carbide -- 10.7 Application of MgO and its composites as corrosion inhibitors for the protection of metallic materials in bioscience -- 10.8 ZnMgO solid solution nanolayer as anticorrosion material -- 10.9 Drawbacks -- 10.10 Conclusion and future perspective -- References -- 11 Copper oxide as a corrosion inhibitor -- 11.1 Introduction -- 11.2 Metallic deterioration and its protection from corrosive environment -- 11.3 Copper oxide as corrosion inhibitor -- 11.4 Summary and future perspective -- References -- 12 Corrosion inhibition by aluminum oxide -- 12.1 Introduction -- 12.2 What is corrosion? -- 12.3 Consequences of corrosion -- 12.4 Methods of controlling corrosion -- 12.5 Corrosion inhibitors -- 12.5.1 Definition of corrosion inhibitors -- 12.5.2 Classification -- 12.5.2.1 Organic inhibitors -- 12.5.2.2 Inorganic inhibitors -- 12.6 Aluminum oxide -- 12.6.1 Influence of pH on aluminum passivation -- 12.6.2 Mechanism of corrosion of aluminum -- 12.7 Potential - pH diagrams -- 12.8 Case study -- 12.8.1 Inhibition of corrosion of aluminum in well water by polyvinyl alcohol, carboxymethyl cellulose, and Zn2+ -- 12.8.2 Electrochemical studies -- 12.8.2.1 Polarization study. , 12.8.2.1.1 Aluminum in well water system (pH 10, adjusted with NaOH).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Organometallic compounds. ; Organometallic compounds-Analysis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (445 pages)
    Edition: 1st ed.
    ISBN: 9783527840939
    Language: English
    Note: Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Editors -- Chapter 1 Organometallic Compounds: The Fundamental Aspects -- 1.1 Introduction -- 1.1.1 Organometallic Chemistry -- 1.1.2 Organometallic Compounds -- 1.1.3 Structure of Organometallic Compound -- 1.2 Milestones in Organometallic Compounds -- 1.2.1 Equation (1.1): Synthesis of First Organometallic Compound -- 1.2.2 Equation (1.2): Preparation of Zeise's Salt -- 1.2.3 Equations (1.3)-(1.5): Preparation of Organochlorosilane Compound -- 1.2.4 Equation (1.6): Synthesis of First Metal Carbonyl Compound -- 1.2.5 Equation (1.7): Synthesis of First Binary Metal Carbonyl Complex -- 1.2.6 Equation (1.8): Barbier Reaction -- 1.2.7 Equation (1.9): Synthesis of Organic Compound Using a Grignard Reagent -- 1.2.8 Equations (1.10) and (1.11): Synthesis of Alkyllithium Compound -- 1.2.9 Equations (1.12) and (1.13): Synthesis of Organolithium Compound -- 1.2.10 Equation (1.14): Hydroformylation Reaction -- 1.2.11 Equation (1.15): Synthesis of Organochlorosilane Compound -- 1.2.12 Equation (1.16): Trimerization of Acetylene -- 1.2.13 Equation (1.17): Synthesis of Ferrocene -- 1.2.14 Equation (1.18): Asymmetric Catalysis Reaction -- 1.2.15 Equation (1.19): Palladium Catalyzed Suzuki Coupling Reaction -- 1.2.16 Equation (1.20): Synthesis of Bucky Ferrocene -- 1.3 Stability of Organometallic Compounds -- 1.4 Properties of Organometallic Compounds -- 1.5 Basic Concepts in Organometallic Compounds -- 1.5.1 18‐Electron Rule -- 1.5.1.1 Statement of 18 Electron Rule -- 1.5.1.2 Examples -- 1.5.2 Π -Back Bonding or Back Donation -- 1.5.3 Hapticity ηx -- 1.6 Hapticity of Ligands -- 1.7 Change in Hapticity -- 1.8 Hapticity Verses Denticity -- 1.9 Counting of Electrons and Finding out Metal-Metal Bonds -- 1.9.1 Calculating the Number of Metal-Metal Bonds. , 1.9.2 Writing the Probable Structure of Compound -- 1.9.3 How to Draw the Probable Structure of Ni(η1‐C3H5) (η3‐C3H5) -- 1.9.4 How to Draw the Probable Structure of (μ‐CO)‐[η5‐CpRh]3(CO) -- 1.10 Metals of Organometallic Compounds -- 1.10.1 Organometallic Compounds of Transition Metals -- 1.10.2 The Bonding and Structure in Different Metal complexes -- 1.10.2.1 Alkene Complexes -- 1.10.2.2 Allyl Complexes -- 1.10.2.3 Carbonyl Complexes -- 1.10.2.4 Metallocenes -- 1.10.2.5 Dihydrogen Complexes -- 1.10.2.6 Transition Metal Carbene Complex -- 1.11 Importance of Organometallic Compounds -- 1.11.1 Types of Organometallic Compounds -- 1.11.2 Uses of Organometallic Compounds -- 1.12 Conclusions -- References -- Chapter 2 Nomenclature of Organometallic Compounds -- 2.1 Introduction -- 2.2 Aim of the Nomenclature -- 2.3 Type of Nomenclature System -- 2.3.1 Binary Nomenclature -- 2.3.2 Substitutive Nomenclature -- 2.3.3 Additive Nomenclature or Coordination nomenclature -- 2.4 Concepts and Conventions -- 2.4.1 Oxidation Number -- 2.4.2 Coordination Number -- 2.4.3 Chelation -- 2.4.4 Ligands -- 2.4.5 Specifying Connectivity - The Kappa (κ) Convention -- 2.4.6 Bridging Ligands - The Mu (μ) Convention -- 2.4.7 Hapticity - The Eta (η) Convention -- 2.5 Regulations Concerning the Nomenclature of Transition Element Organometallic Compounds -- References -- Chapter 3 Classification of Organometallic Compounds -- 3.1 Introduction -- 3.2 Classification of Organometallic Compound -- 3.2.1 Sigma‐Bonded Organometallic Compound -- 3.2.2 π‐Bonded Organometallic Compounds -- 3.2.3 Ionic Bonded Organometallic Compounds -- 3.2.4 Multicentered Bonded Organometallic Compounds -- 3.2.4.1 Based on Heptacity (η1 to η8): -- 3.3 Grignard Reagent (G.R.) -- 3.3.1 Physical Properties -- 3.3.2 Chemical Properties -- 3.3.2.1 Alkanes -- 3.3.2.2 Alkenes -- 3.3.2.3 Alkynes -- 3.3.2.4 Ethers. , 3.3.2.5 Reaction with carbon dioxide -- 3.3.2.6 Insertion Reaction -- 3.3.2.7 Synthesis of Silicones -- 3.3.2.8 Nucleophilic Substitution -- 3.4 Organozinc Compounds -- 3.4.1 Physical Properties -- 3.4.2 Chemical Properties -- 3.5 Organolithium Compounds -- 3.5.1 Reaction Resembling Grignard Reagents -- 3.5.2 Reactions Different from Grignard Reagents -- 3.6 Organosulfur Compounds -- 3.6.1 Physical Properties -- 3.6.2 Chemical Properties -- 3.6.3 Properties Different from Alcohols -- 3.7 Conclusion -- References -- Chapter 4 Synthesis Methods of Organometallic Compounds -- 4.1 Introduction -- 4.2 Synthesis Methods of Organometallic Compounds -- 4.2.1 Electrochemical Methods for the Synthesis of Organometallic Compounds -- 4.2.1.1 Synthesis of Cyano Cu(I) Complexes in the Electrochemical Cell -- 4.2.1.2 Synthesis of an Organorhenium Cyclopentadienyl Complex in the Electrochemical Cell -- 4.2.1.3 Synthesis of N‐heterocyclic Carbene Complexes in the Electrochemical Cell -- 4.2.1.4 Synthesis of Organocopper (I) π‐Complexes in the Electrochemical Cell -- 4.2.1.5 Synthesis of Organonickel σ‐Complexes in the Electrochemical Cell -- 4.2.2 Synthesis of Organic Compounds in the Electrochemical Cell by Metal organic Catalysts -- 4.2.2.1 The Synthesis of Organic Compounds in the Electrochemical Cell by the Ni‐Organic Catalyze -- 4.2.2.2 The Synthesis of Organic Compounds in the Electrochemical Cell by the Pd‐Organic Catalyses -- 4.2.2.3 Synthesis of Organic Compounds in the Electrochemical Cell by the Sm‐Organic Catalyses -- 4.2.3 Synthesis of Organometallic Nucleosides -- 4.2.3.1 A Category: Main Compounds -- 4.2.3.2 A1 Subcategory: Main Compounds -- 4.2.3.3 B Category: Main Compounds -- 4.2.3.4 C Category: Main Compounds -- 4.2.3.5 C1 Subcategory: Main Compounds -- 4.2.3.6 D Categories: Main Compounds -- 4.3 Conclusions -- Acknowledgment. , Authors Contributions -- Conflicts of Interest -- References -- Chapter 5 Metal Carbonyls: Synthesis, Properties, and Structure -- 5.1 Introduction -- 5.2 Classification of Metal Carbonyls -- 5.2.1 Classification Based on Coordinated Ligands -- 5.2.1.1 Homoleptic Carbonyls -- 5.2.1.2 Heteroleptic Carbonyls -- 5.2.2 Classification Based on Number of Metals and the Constitution of Carbonyls -- 5.2.2.1 Mononuclear Carbonyl Complexes -- 5.2.2.2 Polynuclear Carbonyl Complexes -- 5.3 Synthesis of Metal Carbonyls -- 5.3.1 Direct Reaction of Metal with Carbon Monoxide -- 5.3.2 Reductive Carbonylation -- 5.3.3 Photolysis and Thermolysis -- 5.3.4 Abstraction of CO from a Reactive Organic Carbonyl Compounds -- 5.4 Properties of Metal Carbonyls -- 5.4.1 Physical Properties -- 5.4.2 Chemical Properties -- 5.4.2.1 Ligand Substitution Reactions -- 5.4.2.2 Reaction with Sodium Metal -- 5.4.2.3 Reaction with Sodium Hydroxide -- 5.4.2.4 Reaction with Halogens -- 5.4.2.5 Reaction with Hydrogen -- 5.4.2.6 Reaction with Nitricoxide (NO) -- 5.4.2.7 Disproportionation -- 5.5 Structure of Metal Carbonyls -- 5.5.1 Structures of Some Mononuclear Carbonyl Complexes -- 5.5.2 Structures of Some Bi and Polynuclear Carbonyl Complexes -- 5.6 Bonding in Metal Carbonyls -- 5.6.1 Formation of Mixed Atomic Orbitals -- 5.7 Synergistic Effect -- 5.8 Conclusion -- Further Reading -- References -- Chapter 6 Metal-Carbon Multiple Bonded Compounds -- 6.1 Introduction -- 6.2 Nomenclature -- 6.3 Classifications -- 6.3.1 Metal-alkylidene Complexes -- 6.3.2 Metal-alkylidyne Complexes -- 6.4 Structure -- 6.4.1 Alkylidene (Carbene) -- 6.4.2 Carbyne (Alkylidyne) -- 6.5 Preparation Methods -- 6.5.1 Metal-alkylidene Complexes -- 6.5.1.1 By Nucleophilic Carbene -- 6.5.1.2 By Electrophilic Alkylidenes -- 6.5.2 Metal-alkylidyne Complexes -- 6.6 Important Reactions. , 6.6.1 Reaction of Alkylidene Metathesis -- 6.6.2 Important Reaction of Alkylidyne Metathesis -- 6.7 Applications -- References -- Chapter 7 Metallocene: Synthesis, Properties, and Structure -- 7.1 Introduction -- 7.2 Structure of Metallocene -- 7.3 Synthesis of Metallocene -- 7.4 Chemical Properties of Metallocene -- 7.4.1 Ferrocene and Its Derivatives -- 7.4.2 Other Metallocene Sandwiches -- 7.4.3 Main‐group Metallocene -- 7.4.4 Metal-bis‐arene Sandwich Complexes -- 7.4.4.1 General View -- 7.4.4.2 Structure -- 7.4.4.3 Reactions -- 7.5 Conclusion -- References -- Chapter 8 σ‐Complexes, π‐Complexes, and ηn‐CnRn Carbocyclic Polyenes‐Based Organometallic Compounds -- 8.1 Introduction -- 8.2 σ‐Bond Containing Organometallic Compounds -- 8.2.1 Metal Carbonyl -- 8.2.1.1 General Overview -- 8.2.1.2 Syntheses of Metal Carbonyls -- 8.2.1.3 Structure of Metal Carbonyls -- 8.2.1.4 Reactions of Metal Carbonyls -- 8.2.2 Metal-Alkyl, -Vinyl, and -Hydride Complexes -- 8.2.2.1 Metal Alkyls -- 8.2.2.2 Metal Vinyls -- 8.2.2.3 Metal Hydrides -- 8.2.2.4 Metal-Carbene Complexes -- 8.3 π‐Bond Containing Organometallic Compounds -- 8.3.1 Metal-Olefin Complexes -- 8.3.1.1 General Overview -- 8.3.1.2 Syntheses of Metal-Olefin Complexes -- 8.3.1.3 Reactions of Metal-Olefin Complexes -- 8.3.2 Metal-Diene Complexes -- 8.3.3 Metal-Alkyne Complexes -- 8.3.4 π-Allyl Complexes -- 8.3.4.1 Structure of π-Allyl Complexes -- 8.3.4.2 Syntheses of π-Allyl Complexes -- 8.3.4.3 Reactions of π-Allyl Complexes -- 8.4 ηn‐CnRn Carbocyclic Polyenes Containing Organometallic Compounds -- 8.4.1 Cyclopropenyls, η3‐C3R3 -- 8.4.2 Cyclobutadienes, η4‐C4R4 -- 8.4.3 Cyclopentadienyls, η5‐C5R5 -- 8.4.3.1 General Overview -- 8.4.3.2 Structure of Metallocene -- 8.4.3.3 Syntheses of Metallocene -- 8.4.3.4 Chemical Properties of Metallocene -- 8.4.3.5 Applications of Metallocene -- 8.5 Conclusion. , References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Chalcogenides. ; Nanocomposites (Materials). ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (283 pages)
    Edition: 1st ed.
    ISBN: 9780443188084
    Series Statement: Woodhead Publishing Series in Composites Science and Engineering Series
    DDC: 546.72
    Language: English
    Note: Front Cover -- Metal-Chalcogenide Nanocomposites -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1 Chalcogenides and their nanocomposites: fundamental, properties and applications -- 1.1 Introduction -- 1.1.1 Thin film-based supercapacitor -- 1.1.1.1 Thin film-based perovskite solar cells -- 1.2 Metal chalcogenide thin film-based solar cells -- 1.3 Antibacterial applications of thin films -- 1.4 Future perspective/outlook -- 1.5 Conclusion -- Acknowledgment -- References -- 2 Chalcogenides and their nanocomposites in environmental remediation -- 2.1 Introduction -- 2.2 Experimental -- 2.2.1 Hydrothermal method -- 2.2.2 Sonication method -- 2.2.3 Microemulsion method -- 2.2.4 Solvothermal method -- 2.2.5 Sol-gel method -- 2.3 Results and discussion -- 2.3.1 Sulfides (S) chalcogenides -- 2.3.2 Selenide (Se) chalcogenides -- 2.3.3 Tellurides (Te) chalcogenides -- 2.3.4 CO2 reduction -- 2.3.5 Heavy metal removal -- 2.4 Conclusion and future perspectives -- References -- 3 Chalcogenides and their nanocomposites in photocatalytic reactions -- 3.1 Introduction -- 3.2 Chalcogenides for the photocatalytic hydrogen evolution -- 3.2.1 General synthesis approaches of chalcogenides -- 3.2.2 Chalcogenides and their photocatalytic activities -- 3.2.2.1 Molybdenum-based chalcogenides -- 3.2.2.2 Zinc based chalcogenides -- 3.2.2.3 Copper based chalcogenides -- 3.2.2.4 Vanadium based chalcogenides -- 3.2.2.5 Cadmium based chalcogenides -- 3.2.2.6 Tin based chalcogenides -- 3.2.2.7 Titanium-based chalcogenides -- 3.3 Conclusions and perspectives -- References -- 4 Metal chalcogenides and their nanocomposites in water purification systems -- 4.1 Introduction -- 4.1.1 Background of chalcogenides -- 4.1.1.1 Methods of preparation -- Solvothermal method -- Electrospinning method -- Coprecipitation method. , 4.2 Removal of synthetic dyes using metal chalcogenide nanocomposites -- 4.3 Removal of toxic heavy metal ions using metal chalcogenides nanocomposites -- 4.4 Removal of residual antibiotics using metal chalcogenides nanocomposites -- 4.5 Future perspective/outlook -- 4.6 Conclusion -- References -- 5 Metal chalcogenides and their nanocomposites in industrial effluents treatments -- 5.1 Introduction -- 5.2 Role of metal chalcogenides -- 5.3 Conclusion -- References -- 6 Heterostructured transition metal chalcogenides photocatalysts for organic contaminants degradation -- 6.1 Introduction -- 6.2 Methods for wastewater treatment -- 6.2.1 Homogeneous photocatalysis -- 6.2.2 Heterogeneous photocatalysis -- 6.3 Transition metal chalcogenides -- 6.4 Synthesis methodologies -- 6.4.1 Hot-Plate method -- 6.4.2 One-pot heat-up method -- 6.4.3 Hydro/solvothermal method -- 6.4.4 Electrospinning -- 6.4.5 Sonochemical -- 6.5 Characterizations -- 6.6 TMCs as heterogeneous photocatalysts -- 6.7 Application for photocatalytic degradation of organic pollutants -- 6.7.1 Dyes -- 6.7.2 Pesticides and endocrine disruptors -- 6.7.3 Pharmaceuticals -- 6.8 Conclusion -- References -- 7 Chalcogenides and their nanocomposites in heavy metal decontamination -- 7.1 Introduction -- 7.2 Traditional heavy metal treatment -- 7.2.1 Ion exchange methods -- 7.2.2 Adsorption methods -- 7.3 Photocatalytic heavy metal treatment -- 7.4 Conclusion and future perspectives -- Acknowledgments -- Declaration of competing interest -- References -- 8 Chalcogenides and their nanocomposites in oxygen reduction -- 8.1 Introduction -- 8.2 Molybdenum based electrocatalysts -- 8.3 Ruthenium based electrocatalysts -- 8.4 Cobalt based chalcogenides -- 8.5 Rhenium based electrocatalysts -- 8.6 Iridium based electrocatalysts -- 8.7 Other electrocatalysts -- 8.8 Conclusion -- References. , 9 Nanocomposites of chalcogenides as super capacitive materials -- 9.1 Introduction -- 9.2 Chalcogenides as promising electrodes for SCs -- 9.2.1 Nickel-based chalcogenides and their composites for SCs -- 9.2.1.1 Copper-based selenides and their composites for SCs -- 9.2.1.1.1 Manganese-based chalcogenides and their composites for SCs -- 9.3 Conclusion -- References -- 10 Metal-chalcogenides nanocomposites as counter electrodes for quantum dots sensitized solar cells -- 10.1 Introduction -- 10.2 QD sensitizers -- 10.3 Counter electrodes -- 10.4 Interface modification layer -- 10.5 Conclusion -- Acknowledgments -- Author Contributions -- Notes -- References -- 11 II-VI semiconductor metal chalcogenide nanomaterials and polymer composites: fundamentals, properties, and applications -- 11.1 Introduction -- 11.2 Structure and chemical properties of II-VI chalcogenide nanomaterials -- 11.3 Different properties of II-VI chalcogenide nanomaterials -- 11.3.1 Electrical and optical properties -- 11.3.2 Thermal properties -- 11.3.3 Physical properties -- 11.3.3.1 Refractive index and dispersion -- 11.3.3.2 Linear loss mechanisms -- 11.3.3.3 Photo-induced phenomena -- 11.4 Chemical Synthesis of II-VI chalcogenide nanomaterials and polymer composites -- 11.4.1 Chemical route for preparation of II-VI chalcogenide nanocrystals in powder form -- 11.4.2 Synthesis of thin films embedded in polymers -- 11.5 Applications of chalcogenides nanomaterials -- 11.5.1 Applications of chalcogenide nanomaterials and heterostructures for quantum dot LEDs -- 11.5.2 Applications of chalcogenide nanomaterials and their heterostructures for photocatalysis -- 11.5.3 Applications of chalcogenides nanomaterials heterostructures for solar cell -- 11.5.3.1 Thin film photovoltaic cell -- 11.5.3.2 Polymer/quantum dot hybrid organic-inorganic solar cell. , 11.5.3.3 Chalcogenides nanostructures for hybrid photovoltaic cell -- 11.6 Summary and future scope -- References -- 12 Challenges and opportunities of chalcogenides and their nanocomposites -- 12.1 Introduction -- 12.1.1 Introduction to chalcogens -- 12.1.2 Introduction to chalcogenides -- 12.1.3 Classification of chalcogenides based on the number of elements -- 12.1.3.1 Binary chalcogenides -- 12.1.3.2 Ternary chalcogenides -- 12.1.3.3 Quaternary chalcogenides -- 12.1.4 Classification of chalcogenides based on the number of chalcogen ions -- 12.1.4.1 Mono-chalcogenides -- 12.1.4.2 Dichalcogenides -- 12.1.4.3 Trichalcogenides -- 12.1.5 Chalcogenide nanomaterials -- 12.1.5.1 Metal-based chalcogenides -- 12.1.5.2 Noble metal-based chalcogenides -- 12.1.5.3 Chalcogenide composites -- 12.2 Synthesis of metal chalcogenide and their nanocomposites -- 12.2.1 Hot-injection method -- 12.2.2 Hydrothermal method -- 12.2.3 Solvothermal method -- 12.2.4 Microwave method -- 12.2.5 Sonochemical method -- 12.2.6 Growth of metal chalcogenide nanostructure arrays on substrates -- 12.3 Preparation of chalcogenide nanocomposites -- 12.3.1 Preparation of metal chalcogenide nanocomposites with carbon materials -- 12.3.2 Preparation of chalcogenide nanocomposites with noble metals -- 12.3.3 Preparation of chalcogenide nanocomposites with metal oxides -- 12.4 Application of chalcogenide and their nanocomposites -- 12.4.1 Photocatalysts -- 12.4.2 Environmental remediation -- 12.4.3 Reduction of nitroaromatic compounds -- 12.4.4 Supercapacitors -- 12.4.5 Lithium-ion batteries -- 12.4.6 Water splitting -- 12.4.7 CO2 activation -- 12.5 Future prospects of chalcogenides -- 12.6 Conclusion -- References -- Index -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Singapore : Springer Nature Singapore | Singapore : Imprint: Springer
    Keywords: Refuse and refuse disposal. ; Corrosion and anti-corrosives. ; Nanotechnology. ; Food science.
    Description / Table of Contents: Corrosion: Basics, Adverse Effects and Its Mitigation -- Corrosion Mitigation using Green Chemicals -- Bio-Waste: Introduction, Origin and Management -- Food Waste: Introduction, and Origin -- Food Waste: Environmental Impact Assessment -- Sustainable Management and Valorisation of Food Waste -- Agricultural Waste as Corrosion Inhibitor -- Vegetable and Fruit/Fruit Juice Waste as Corrosion Inhibitor -- Plant Waste as Corrosion Inhibitor -- Slaughterhouse Trash as Corrosion Inhibitor -- Industrial Corrosion Inhibitors: Food Waste as Ideal Substitutes -- Economics and Commercialization of Food Waste as Corrosion Inhibitors.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(X, 277 p. 56 illus., 44 illus. in color.)
    Edition: 1st ed. 2024.
    ISBN: 9789819711604
    Series Statement: Materials Horizons: From Nature to Nanomaterials
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...