GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Chalcogenides. ; Nanocomposites (Materials). ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (283 pages)
    Edition: 1st ed.
    ISBN: 9780443188084
    Series Statement: Woodhead Publishing Series in Composites Science and Engineering Series
    DDC: 546.72
    Language: English
    Note: Front Cover -- Metal-Chalcogenide Nanocomposites -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1 Chalcogenides and their nanocomposites: fundamental, properties and applications -- 1.1 Introduction -- 1.1.1 Thin film-based supercapacitor -- 1.1.1.1 Thin film-based perovskite solar cells -- 1.2 Metal chalcogenide thin film-based solar cells -- 1.3 Antibacterial applications of thin films -- 1.4 Future perspective/outlook -- 1.5 Conclusion -- Acknowledgment -- References -- 2 Chalcogenides and their nanocomposites in environmental remediation -- 2.1 Introduction -- 2.2 Experimental -- 2.2.1 Hydrothermal method -- 2.2.2 Sonication method -- 2.2.3 Microemulsion method -- 2.2.4 Solvothermal method -- 2.2.5 Sol-gel method -- 2.3 Results and discussion -- 2.3.1 Sulfides (S) chalcogenides -- 2.3.2 Selenide (Se) chalcogenides -- 2.3.3 Tellurides (Te) chalcogenides -- 2.3.4 CO2 reduction -- 2.3.5 Heavy metal removal -- 2.4 Conclusion and future perspectives -- References -- 3 Chalcogenides and their nanocomposites in photocatalytic reactions -- 3.1 Introduction -- 3.2 Chalcogenides for the photocatalytic hydrogen evolution -- 3.2.1 General synthesis approaches of chalcogenides -- 3.2.2 Chalcogenides and their photocatalytic activities -- 3.2.2.1 Molybdenum-based chalcogenides -- 3.2.2.2 Zinc based chalcogenides -- 3.2.2.3 Copper based chalcogenides -- 3.2.2.4 Vanadium based chalcogenides -- 3.2.2.5 Cadmium based chalcogenides -- 3.2.2.6 Tin based chalcogenides -- 3.2.2.7 Titanium-based chalcogenides -- 3.3 Conclusions and perspectives -- References -- 4 Metal chalcogenides and their nanocomposites in water purification systems -- 4.1 Introduction -- 4.1.1 Background of chalcogenides -- 4.1.1.1 Methods of preparation -- Solvothermal method -- Electrospinning method -- Coprecipitation method. , 4.2 Removal of synthetic dyes using metal chalcogenide nanocomposites -- 4.3 Removal of toxic heavy metal ions using metal chalcogenides nanocomposites -- 4.4 Removal of residual antibiotics using metal chalcogenides nanocomposites -- 4.5 Future perspective/outlook -- 4.6 Conclusion -- References -- 5 Metal chalcogenides and their nanocomposites in industrial effluents treatments -- 5.1 Introduction -- 5.2 Role of metal chalcogenides -- 5.3 Conclusion -- References -- 6 Heterostructured transition metal chalcogenides photocatalysts for organic contaminants degradation -- 6.1 Introduction -- 6.2 Methods for wastewater treatment -- 6.2.1 Homogeneous photocatalysis -- 6.2.2 Heterogeneous photocatalysis -- 6.3 Transition metal chalcogenides -- 6.4 Synthesis methodologies -- 6.4.1 Hot-Plate method -- 6.4.2 One-pot heat-up method -- 6.4.3 Hydro/solvothermal method -- 6.4.4 Electrospinning -- 6.4.5 Sonochemical -- 6.5 Characterizations -- 6.6 TMCs as heterogeneous photocatalysts -- 6.7 Application for photocatalytic degradation of organic pollutants -- 6.7.1 Dyes -- 6.7.2 Pesticides and endocrine disruptors -- 6.7.3 Pharmaceuticals -- 6.8 Conclusion -- References -- 7 Chalcogenides and their nanocomposites in heavy metal decontamination -- 7.1 Introduction -- 7.2 Traditional heavy metal treatment -- 7.2.1 Ion exchange methods -- 7.2.2 Adsorption methods -- 7.3 Photocatalytic heavy metal treatment -- 7.4 Conclusion and future perspectives -- Acknowledgments -- Declaration of competing interest -- References -- 8 Chalcogenides and their nanocomposites in oxygen reduction -- 8.1 Introduction -- 8.2 Molybdenum based electrocatalysts -- 8.3 Ruthenium based electrocatalysts -- 8.4 Cobalt based chalcogenides -- 8.5 Rhenium based electrocatalysts -- 8.6 Iridium based electrocatalysts -- 8.7 Other electrocatalysts -- 8.8 Conclusion -- References. , 9 Nanocomposites of chalcogenides as super capacitive materials -- 9.1 Introduction -- 9.2 Chalcogenides as promising electrodes for SCs -- 9.2.1 Nickel-based chalcogenides and their composites for SCs -- 9.2.1.1 Copper-based selenides and their composites for SCs -- 9.2.1.1.1 Manganese-based chalcogenides and their composites for SCs -- 9.3 Conclusion -- References -- 10 Metal-chalcogenides nanocomposites as counter electrodes for quantum dots sensitized solar cells -- 10.1 Introduction -- 10.2 QD sensitizers -- 10.3 Counter electrodes -- 10.4 Interface modification layer -- 10.5 Conclusion -- Acknowledgments -- Author Contributions -- Notes -- References -- 11 II-VI semiconductor metal chalcogenide nanomaterials and polymer composites: fundamentals, properties, and applications -- 11.1 Introduction -- 11.2 Structure and chemical properties of II-VI chalcogenide nanomaterials -- 11.3 Different properties of II-VI chalcogenide nanomaterials -- 11.3.1 Electrical and optical properties -- 11.3.2 Thermal properties -- 11.3.3 Physical properties -- 11.3.3.1 Refractive index and dispersion -- 11.3.3.2 Linear loss mechanisms -- 11.3.3.3 Photo-induced phenomena -- 11.4 Chemical Synthesis of II-VI chalcogenide nanomaterials and polymer composites -- 11.4.1 Chemical route for preparation of II-VI chalcogenide nanocrystals in powder form -- 11.4.2 Synthesis of thin films embedded in polymers -- 11.5 Applications of chalcogenides nanomaterials -- 11.5.1 Applications of chalcogenide nanomaterials and heterostructures for quantum dot LEDs -- 11.5.2 Applications of chalcogenide nanomaterials and their heterostructures for photocatalysis -- 11.5.3 Applications of chalcogenides nanomaterials heterostructures for solar cell -- 11.5.3.1 Thin film photovoltaic cell -- 11.5.3.2 Polymer/quantum dot hybrid organic-inorganic solar cell. , 11.5.3.3 Chalcogenides nanostructures for hybrid photovoltaic cell -- 11.6 Summary and future scope -- References -- 12 Challenges and opportunities of chalcogenides and their nanocomposites -- 12.1 Introduction -- 12.1.1 Introduction to chalcogens -- 12.1.2 Introduction to chalcogenides -- 12.1.3 Classification of chalcogenides based on the number of elements -- 12.1.3.1 Binary chalcogenides -- 12.1.3.2 Ternary chalcogenides -- 12.1.3.3 Quaternary chalcogenides -- 12.1.4 Classification of chalcogenides based on the number of chalcogen ions -- 12.1.4.1 Mono-chalcogenides -- 12.1.4.2 Dichalcogenides -- 12.1.4.3 Trichalcogenides -- 12.1.5 Chalcogenide nanomaterials -- 12.1.5.1 Metal-based chalcogenides -- 12.1.5.2 Noble metal-based chalcogenides -- 12.1.5.3 Chalcogenide composites -- 12.2 Synthesis of metal chalcogenide and their nanocomposites -- 12.2.1 Hot-injection method -- 12.2.2 Hydrothermal method -- 12.2.3 Solvothermal method -- 12.2.4 Microwave method -- 12.2.5 Sonochemical method -- 12.2.6 Growth of metal chalcogenide nanostructure arrays on substrates -- 12.3 Preparation of chalcogenide nanocomposites -- 12.3.1 Preparation of metal chalcogenide nanocomposites with carbon materials -- 12.3.2 Preparation of chalcogenide nanocomposites with noble metals -- 12.3.3 Preparation of chalcogenide nanocomposites with metal oxides -- 12.4 Application of chalcogenide and their nanocomposites -- 12.4.1 Photocatalysts -- 12.4.2 Environmental remediation -- 12.4.3 Reduction of nitroaromatic compounds -- 12.4.4 Supercapacitors -- 12.4.5 Lithium-ion batteries -- 12.4.6 Water splitting -- 12.4.7 CO2 activation -- 12.5 Future prospects of chalcogenides -- 12.6 Conclusion -- References -- Index -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Organometallic compounds. ; Organometallic compounds-Analysis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (445 pages)
    Edition: 1st ed.
    ISBN: 9783527840939
    Language: English
    Note: Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Editors -- Chapter 1 Organometallic Compounds: The Fundamental Aspects -- 1.1 Introduction -- 1.1.1 Organometallic Chemistry -- 1.1.2 Organometallic Compounds -- 1.1.3 Structure of Organometallic Compound -- 1.2 Milestones in Organometallic Compounds -- 1.2.1 Equation (1.1): Synthesis of First Organometallic Compound -- 1.2.2 Equation (1.2): Preparation of Zeise's Salt -- 1.2.3 Equations (1.3)-(1.5): Preparation of Organochlorosilane Compound -- 1.2.4 Equation (1.6): Synthesis of First Metal Carbonyl Compound -- 1.2.5 Equation (1.7): Synthesis of First Binary Metal Carbonyl Complex -- 1.2.6 Equation (1.8): Barbier Reaction -- 1.2.7 Equation (1.9): Synthesis of Organic Compound Using a Grignard Reagent -- 1.2.8 Equations (1.10) and (1.11): Synthesis of Alkyllithium Compound -- 1.2.9 Equations (1.12) and (1.13): Synthesis of Organolithium Compound -- 1.2.10 Equation (1.14): Hydroformylation Reaction -- 1.2.11 Equation (1.15): Synthesis of Organochlorosilane Compound -- 1.2.12 Equation (1.16): Trimerization of Acetylene -- 1.2.13 Equation (1.17): Synthesis of Ferrocene -- 1.2.14 Equation (1.18): Asymmetric Catalysis Reaction -- 1.2.15 Equation (1.19): Palladium Catalyzed Suzuki Coupling Reaction -- 1.2.16 Equation (1.20): Synthesis of Bucky Ferrocene -- 1.3 Stability of Organometallic Compounds -- 1.4 Properties of Organometallic Compounds -- 1.5 Basic Concepts in Organometallic Compounds -- 1.5.1 18‐Electron Rule -- 1.5.1.1 Statement of 18 Electron Rule -- 1.5.1.2 Examples -- 1.5.2 Π -Back Bonding or Back Donation -- 1.5.3 Hapticity ηx -- 1.6 Hapticity of Ligands -- 1.7 Change in Hapticity -- 1.8 Hapticity Verses Denticity -- 1.9 Counting of Electrons and Finding out Metal-Metal Bonds -- 1.9.1 Calculating the Number of Metal-Metal Bonds. , 1.9.2 Writing the Probable Structure of Compound -- 1.9.3 How to Draw the Probable Structure of Ni(η1‐C3H5) (η3‐C3H5) -- 1.9.4 How to Draw the Probable Structure of (μ‐CO)‐[η5‐CpRh]3(CO) -- 1.10 Metals of Organometallic Compounds -- 1.10.1 Organometallic Compounds of Transition Metals -- 1.10.2 The Bonding and Structure in Different Metal complexes -- 1.10.2.1 Alkene Complexes -- 1.10.2.2 Allyl Complexes -- 1.10.2.3 Carbonyl Complexes -- 1.10.2.4 Metallocenes -- 1.10.2.5 Dihydrogen Complexes -- 1.10.2.6 Transition Metal Carbene Complex -- 1.11 Importance of Organometallic Compounds -- 1.11.1 Types of Organometallic Compounds -- 1.11.2 Uses of Organometallic Compounds -- 1.12 Conclusions -- References -- Chapter 2 Nomenclature of Organometallic Compounds -- 2.1 Introduction -- 2.2 Aim of the Nomenclature -- 2.3 Type of Nomenclature System -- 2.3.1 Binary Nomenclature -- 2.3.2 Substitutive Nomenclature -- 2.3.3 Additive Nomenclature or Coordination nomenclature -- 2.4 Concepts and Conventions -- 2.4.1 Oxidation Number -- 2.4.2 Coordination Number -- 2.4.3 Chelation -- 2.4.4 Ligands -- 2.4.5 Specifying Connectivity - The Kappa (κ) Convention -- 2.4.6 Bridging Ligands - The Mu (μ) Convention -- 2.4.7 Hapticity - The Eta (η) Convention -- 2.5 Regulations Concerning the Nomenclature of Transition Element Organometallic Compounds -- References -- Chapter 3 Classification of Organometallic Compounds -- 3.1 Introduction -- 3.2 Classification of Organometallic Compound -- 3.2.1 Sigma‐Bonded Organometallic Compound -- 3.2.2 π‐Bonded Organometallic Compounds -- 3.2.3 Ionic Bonded Organometallic Compounds -- 3.2.4 Multicentered Bonded Organometallic Compounds -- 3.2.4.1 Based on Heptacity (η1 to η8): -- 3.3 Grignard Reagent (G.R.) -- 3.3.1 Physical Properties -- 3.3.2 Chemical Properties -- 3.3.2.1 Alkanes -- 3.3.2.2 Alkenes -- 3.3.2.3 Alkynes -- 3.3.2.4 Ethers. , 3.3.2.5 Reaction with carbon dioxide -- 3.3.2.6 Insertion Reaction -- 3.3.2.7 Synthesis of Silicones -- 3.3.2.8 Nucleophilic Substitution -- 3.4 Organozinc Compounds -- 3.4.1 Physical Properties -- 3.4.2 Chemical Properties -- 3.5 Organolithium Compounds -- 3.5.1 Reaction Resembling Grignard Reagents -- 3.5.2 Reactions Different from Grignard Reagents -- 3.6 Organosulfur Compounds -- 3.6.1 Physical Properties -- 3.6.2 Chemical Properties -- 3.6.3 Properties Different from Alcohols -- 3.7 Conclusion -- References -- Chapter 4 Synthesis Methods of Organometallic Compounds -- 4.1 Introduction -- 4.2 Synthesis Methods of Organometallic Compounds -- 4.2.1 Electrochemical Methods for the Synthesis of Organometallic Compounds -- 4.2.1.1 Synthesis of Cyano Cu(I) Complexes in the Electrochemical Cell -- 4.2.1.2 Synthesis of an Organorhenium Cyclopentadienyl Complex in the Electrochemical Cell -- 4.2.1.3 Synthesis of N‐heterocyclic Carbene Complexes in the Electrochemical Cell -- 4.2.1.4 Synthesis of Organocopper (I) π‐Complexes in the Electrochemical Cell -- 4.2.1.5 Synthesis of Organonickel σ‐Complexes in the Electrochemical Cell -- 4.2.2 Synthesis of Organic Compounds in the Electrochemical Cell by Metal organic Catalysts -- 4.2.2.1 The Synthesis of Organic Compounds in the Electrochemical Cell by the Ni‐Organic Catalyze -- 4.2.2.2 The Synthesis of Organic Compounds in the Electrochemical Cell by the Pd‐Organic Catalyses -- 4.2.2.3 Synthesis of Organic Compounds in the Electrochemical Cell by the Sm‐Organic Catalyses -- 4.2.3 Synthesis of Organometallic Nucleosides -- 4.2.3.1 A Category: Main Compounds -- 4.2.3.2 A1 Subcategory: Main Compounds -- 4.2.3.3 B Category: Main Compounds -- 4.2.3.4 C Category: Main Compounds -- 4.2.3.5 C1 Subcategory: Main Compounds -- 4.2.3.6 D Categories: Main Compounds -- 4.3 Conclusions -- Acknowledgment. , Authors Contributions -- Conflicts of Interest -- References -- Chapter 5 Metal Carbonyls: Synthesis, Properties, and Structure -- 5.1 Introduction -- 5.2 Classification of Metal Carbonyls -- 5.2.1 Classification Based on Coordinated Ligands -- 5.2.1.1 Homoleptic Carbonyls -- 5.2.1.2 Heteroleptic Carbonyls -- 5.2.2 Classification Based on Number of Metals and the Constitution of Carbonyls -- 5.2.2.1 Mononuclear Carbonyl Complexes -- 5.2.2.2 Polynuclear Carbonyl Complexes -- 5.3 Synthesis of Metal Carbonyls -- 5.3.1 Direct Reaction of Metal with Carbon Monoxide -- 5.3.2 Reductive Carbonylation -- 5.3.3 Photolysis and Thermolysis -- 5.3.4 Abstraction of CO from a Reactive Organic Carbonyl Compounds -- 5.4 Properties of Metal Carbonyls -- 5.4.1 Physical Properties -- 5.4.2 Chemical Properties -- 5.4.2.1 Ligand Substitution Reactions -- 5.4.2.2 Reaction with Sodium Metal -- 5.4.2.3 Reaction with Sodium Hydroxide -- 5.4.2.4 Reaction with Halogens -- 5.4.2.5 Reaction with Hydrogen -- 5.4.2.6 Reaction with Nitricoxide (NO) -- 5.4.2.7 Disproportionation -- 5.5 Structure of Metal Carbonyls -- 5.5.1 Structures of Some Mononuclear Carbonyl Complexes -- 5.5.2 Structures of Some Bi and Polynuclear Carbonyl Complexes -- 5.6 Bonding in Metal Carbonyls -- 5.6.1 Formation of Mixed Atomic Orbitals -- 5.7 Synergistic Effect -- 5.8 Conclusion -- Further Reading -- References -- Chapter 6 Metal-Carbon Multiple Bonded Compounds -- 6.1 Introduction -- 6.2 Nomenclature -- 6.3 Classifications -- 6.3.1 Metal-alkylidene Complexes -- 6.3.2 Metal-alkylidyne Complexes -- 6.4 Structure -- 6.4.1 Alkylidene (Carbene) -- 6.4.2 Carbyne (Alkylidyne) -- 6.5 Preparation Methods -- 6.5.1 Metal-alkylidene Complexes -- 6.5.1.1 By Nucleophilic Carbene -- 6.5.1.2 By Electrophilic Alkylidenes -- 6.5.2 Metal-alkylidyne Complexes -- 6.6 Important Reactions. , 6.6.1 Reaction of Alkylidene Metathesis -- 6.6.2 Important Reaction of Alkylidyne Metathesis -- 6.7 Applications -- References -- Chapter 7 Metallocene: Synthesis, Properties, and Structure -- 7.1 Introduction -- 7.2 Structure of Metallocene -- 7.3 Synthesis of Metallocene -- 7.4 Chemical Properties of Metallocene -- 7.4.1 Ferrocene and Its Derivatives -- 7.4.2 Other Metallocene Sandwiches -- 7.4.3 Main‐group Metallocene -- 7.4.4 Metal-bis‐arene Sandwich Complexes -- 7.4.4.1 General View -- 7.4.4.2 Structure -- 7.4.4.3 Reactions -- 7.5 Conclusion -- References -- Chapter 8 σ‐Complexes, π‐Complexes, and ηn‐CnRn Carbocyclic Polyenes‐Based Organometallic Compounds -- 8.1 Introduction -- 8.2 σ‐Bond Containing Organometallic Compounds -- 8.2.1 Metal Carbonyl -- 8.2.1.1 General Overview -- 8.2.1.2 Syntheses of Metal Carbonyls -- 8.2.1.3 Structure of Metal Carbonyls -- 8.2.1.4 Reactions of Metal Carbonyls -- 8.2.2 Metal-Alkyl, -Vinyl, and -Hydride Complexes -- 8.2.2.1 Metal Alkyls -- 8.2.2.2 Metal Vinyls -- 8.2.2.3 Metal Hydrides -- 8.2.2.4 Metal-Carbene Complexes -- 8.3 π‐Bond Containing Organometallic Compounds -- 8.3.1 Metal-Olefin Complexes -- 8.3.1.1 General Overview -- 8.3.1.2 Syntheses of Metal-Olefin Complexes -- 8.3.1.3 Reactions of Metal-Olefin Complexes -- 8.3.2 Metal-Diene Complexes -- 8.3.3 Metal-Alkyne Complexes -- 8.3.4 π-Allyl Complexes -- 8.3.4.1 Structure of π-Allyl Complexes -- 8.3.4.2 Syntheses of π-Allyl Complexes -- 8.3.4.3 Reactions of π-Allyl Complexes -- 8.4 ηn‐CnRn Carbocyclic Polyenes Containing Organometallic Compounds -- 8.4.1 Cyclopropenyls, η3‐C3R3 -- 8.4.2 Cyclobutadienes, η4‐C4R4 -- 8.4.3 Cyclopentadienyls, η5‐C5R5 -- 8.4.3.1 General Overview -- 8.4.3.2 Structure of Metallocene -- 8.4.3.3 Syntheses of Metallocene -- 8.4.3.4 Chemical Properties of Metallocene -- 8.4.3.5 Applications of Metallocene -- 8.5 Conclusion. , References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Biosurfactants. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (568 pages)
    Edition: 1st ed.
    ISBN: 9783031216824
    DDC: 668.1
    Language: English
    Note: Intro -- Preface -- Contents -- About the Editors -- Part I: Overview and Economic Aspect of Biosurfactants Production -- Biosurfactants: Types, Sources, and Production -- 1 Introduction -- 2 The Superiority of Biosurfactants Over Other Synthetic and Plant-Based Surfactants -- 3 Global Biosurfactant Market -- 4 Types of Biosurfactants -- 5 Sources of Production of Biosurfactants -- 6 Factors Affecting Biosurfactants Production -- 7 Challenges and Future Research Directions -- 8 Conclusion -- References -- Innovative and Sustainable Production Processes for Biosurfactants -- 1 Introduction -- 2 Sustainable Approaches to Biosurfactant Production in Submerged Fermentation Using Low-Cost Substrates -- 2.1 The Use of Renewable Resources for Glycolipids Production -- 2.2 The Use of Renewable Resources for Lipopeptide Production -- 2.3 Research Needs and Future Directions to Sustainable BS Production in Submerged Bioprocesses -- 3 Solid-State Fermentation as a Sustainable Technology for Biosurfactant Production -- 3.1 The Use of Food and Agro-industrial Wastes for Biosurfactant Production by SSF -- 3.2 Challenges and Perspectives -- 4 Genetically Enhanced and Hyper-Producing Recombinant Strains -- 5 Biosurfactant Co-production -- 6 Final Considerations -- References -- Sustainable Production of Biosurfactants Using Waste Substrates -- 1 Introduction -- 2 Biosurfactant Production from Wastes -- 2.1 Rhamnolipids -- 2.2 Lipopeptides -- 2.3 Sophorolipids -- 2.4 Other Biosurfactants -- 3 Discussion -- 4 Conclusions and Future Directions -- References -- Characterization and Purification of Biosurfactants -- 1 Introduction -- 2 Properties of Biosurfactants -- 2.1 Critical Micelle Concentration (CMC) -- 2.2 Temperature and pH Tolerance -- 2.3 Biodegradability -- 2.4 Specificity -- 2.5 Emulsion Forming/Breaking -- 2.6 Antiadhesive Agents. , 3 Classification of Microbial Biosurfactant -- 3.1 Glycolipids -- 3.2 Lipopeptide -- 3.3 Neutral Lipids, Fatty Acids, and Phospholipids -- 4 Factors Affecting Biosurfactants -- 4.1 Carbon Source in Biosurfactant Production -- 4.2 Nitrogen Source in Biosurfactant Production -- 4.3 pH -- 4.4 Aeration and Agitation -- 4.5 Salinity -- 5 Characterization of Biosurfactant -- 5.1 Biochemical Assays -- 5.2 Thin-Layer Chromatography/Purified Biosurfactant Fractions -- 5.3 Product Analysis by Liquid Chromatography-Mass Spectrometry (LC-MS) -- 5.4 Fourier Transform Infrared Spectroscopy (FTIR) -- 5.5 Gas Chromatography-Mass Spectrometry (GC-MS) -- 5.6 Electrospray Ionization Mass Spectrometry (ESI-MS) -- 5.7 High-Performance Liquid Chromatography (HPLC) -- 6 Extraction and Purification of Biosurfactant -- 7 Purification -- 8 Conclusion -- References -- Biodegradation and Cytotoxic Effects of Biosurfactants -- 1 Introduction -- 2 Molecular Weight-Based Categorization of Biosurfactants -- 2.1 Low-Molecular-Weight Biosurfactants -- 2.1.1 Glycolipids -- 2.1.1.1 Rhamnolipids -- 2.1.1.2 Sophorolipids -- 2.1.1.3 Trehalolipids -- 2.1.2 Phospholipids -- 2.1.3 Lipopeptides -- 2.2 High-Molecular-Weight Biosurfactants -- 2.2.1 Lipopolysaccharides and Amphipathic Polysaccharides -- 2.2.2 Lipoproteins -- 3 Biological Properties of Biosurfactants -- 4 Role of Biosurfactants in Biodegradation -- 5 In vitro Cytotoxic Effects of Biosurfactants -- 5.1 Breast Cancer -- 5.2 Colon Cancer -- 5.3 Leukemia -- 5.4 Liver Cancer -- 5.5 Other Cancer Types -- 6 Conclusion -- 7 Challenges and Future Prospects of Biosurfactants -- References -- Comparison of Biodegradability, and Toxicity Effect of Biosurfactants with Synthetic Surfactants -- 1 Introduction -- 2 The Environmental Impact of Synthetic Surfactants -- 3 Cytotoxicity of Surfactants and Biosurfactants. , 4 Biodegradation of Biosurfactants -- 5 Synthetic Surfactants and Biosurfactants in the Cosmetic Industry -- 6 Biosurfactants Applied in the Food Industry -- 7 Future Directions -- 8 Conclusions -- References -- Surface Activity and Emulsification Properties of Saponins as Biosurfactants -- 1 Introduction -- 2 Structure Diversity and Properties -- 3 Surface Properties of Saponins -- 4 Critical Micelle Concentration -- 5 Saponins as Biosurfactants -- 6 Saponin-Stabilized Nanoemulsions -- 7 Conclusion -- References -- Part II: Biosurfactants: Current Industrial Applications -- Biosurfactants as Emulsifying Agents in Food Formulation -- 1 Introduction -- 2 Roles of Additives and Importance of Biosurfactants in the Food Sector -- 2.1 Roles of Additives in the Food Sector -- 2.1.1 Freshness Maintenance -- 2.1.2 Safety Maintenance -- 2.1.3 Improving the Appearance and Texture -- 2.1.4 Maintenance and Improvement of Nutritional Value -- 2.2 Importance of Emulsifiers and Surfactants in the Food Sector -- 3 Biosurfactants in Food Formulations as the Emulsifiers -- 3.1 Food Formulations as Enhanced by Biosurfactants -- 3.2 Evacuating Heavy Metals from Foods Using Biosurfactants -- 3.3 Sanitations of Food Processing Using Biosurfactants -- 3.4 Biosurfactants as Food Additives -- 4 Conclusion -- References -- Application of Biosurfactants as Anti-Corrosive Agents -- 1 Introduction -- 2 An Introduction to Biosurfactants -- 3 Biosurfactants as Anti-Corrosive Agents for Corrosion -- 4 Biosurfactants as Biocides for Biocorrosion -- 5 Conclusion -- References -- Role of Biosurfactants in Nanoparticles Synthesis and their Stabilization -- 1 Introduction -- 1.1 Biosynthesis of Microbial Nanoparticles -- 2 Biosurfactants -- 2.1 Sources of Biosurfactants -- 2.2 Isolation and Selection of Biosurfactant-Producing Microbes -- 2.3 Use of Cheaper Substrates. , 3 Biosurfactants: Types, Structures, and Properties -- 3.1 Structure -- 3.2 Types -- 3.3 Properties -- 4 Advantages of Biosurfactants -- 5 Biological Synthesis of Nanoparticles -- 5.1 Biosurfactant-Mediated Nanoparticle Synthesis -- 5.2 Mechanism of Biosurfactant-Mediated Nanoparticle Synthesis -- 6 Role of Biosurfactants in Biosynthesis of Metallic Nanoparticles (Me-NPs) -- 7 Glycolipids Biosurfactants Produced Nanoparticles -- 7.1 Lipopeptides Biosurfactants Produced Nanoparticles -- 8 Chemical Surfactants and Nanoparticles -- 9 The Antimicrobial and Cellular Activity of Nanoparticles -- 10 Use of Lipoproteins and Lipopeptides in the Synthesis of Nanoparticles -- 11 Use of Glycolipopeptides, Glycopeptides, and Glycoproteins in the Formation of Nanoparticles -- 12 Conclusions and Future Perspective -- References -- New Trends in the Textile Industry: Utilization and Application of Biosurfactants -- 1 Textile Industry -- 2 Textile Effluent -- 2.1 Dye Toxicity -- 3 Conventional Treatment of Textile Industrial Effluents -- 4 Role of Biosurfactants in Promoting Environmental Sustainability -- 4.1 Application of Biosurfactant in the Textile Industry -- 5 Conclusion and Future Perspectives -- References -- Biosurfactants as an Eco-Friendly Technology in Heavy Metal Remediation -- 1 Environmental Contamination by Heavy Metals -- 2 Role of Biosurfactants in Metal Remediation -- 3 Mechanism of the Process of Heavy Metals Removal by Biosurfactants -- 4 Applications of the Process -- 5 Biosurfactants in Co-Contaminated Sites Remediation -- 6 Patents of Biosurfactants for Application in the Removal of Heavy Metals -- 7 Conclusion and Future Perspectives -- References -- Biosurfactants and Their Perspectives for Application in Drug Adsorption -- 1 Introduction -- 2 Characteristics of Biosurfactants. , 3 General Concepts of the Adsorption Technique in the Liquid Phase -- 4 Influence of Biosurfactants on Drug Adsorption -- 5 Conclusion and Future Perspectives -- References -- Role of Biosurfactants in Promoting Biodegradation in Waste Treatment -- 1 Introduction -- 2 Waste Management -- 2.1 Toxicity of Waste Containing Hazardous Pollutants -- 3 Bioremediation in Waste Management and Treatment -- 3.1 Land Treatment -- 3.2 Composting/Biopile -- 3.3 Bio-slurry Treatment -- 4 Microbial Degradation of Organic Pollutants Found in Waste -- 5 The Processes Involved in the Biodegradation of Hydrocarbons -- 5.1 Factors Affecting the Rate of Degradation -- 6 Role of Surfactants in the Degradation of Organic Pollutants -- 6.1 Classification and Properties of Surfactants -- 6.2 Toxicity of Surfactants and Biosurfactants -- 6.3 Types of Biosurfactants and Biosurfactant Producing Microorganisms -- 7 Conclusion -- References -- Role of Biosurfactants in Agriculture Management -- 1 Introduction -- 2 Unique Properties of Biosurfactants -- 3 Role of Biosurfactants in Biofilm Formation and Root Colonization -- 4 Potential of Biosurfactants as Antifungal Agents -- 5 Mechanism for Antimicrobial Action -- 6 Role of Biosurfactants in Nutrient Bioavailability in the Soil -- 7 Biosurfactants in Pesticide Degradation and Soil Rehabilitation -- 8 Conclusion and Future Prospects -- 9 Commercial Resources of Biosurfactants -- 10 Suggested Reviewers. -- References -- Biosurfactants and Their Benefits for Seeds -- 1 Introduction -- 2 Antimicrobial Properties -- 3 Stimulation of Plant Immunity -- 4 Bioremediation Properties -- 5 Non-phytotoxicity of Biosurfactants -- 6 Potent Plant Growth Promoter -- 7 Synergistic Action of Biosurfactants -- 8 Conclusion -- 9 Companies, Organizations, and Research Groups Working on the Topic -- References. , Role of Biosurfactants in Marine Sediment Remediation of Organic Pollutants.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Inorganic compounds-Analysis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (426 pages)
    Edition: 1st ed.
    ISBN: 9780323904117
    DDC: 661
    Language: English
    Note: Front Cover -- Inorganic Anticorrosive Materials -- Copyright Page -- Contents -- List of contributors -- I. Overview on metal oxides -- 1 Nanomaterials as corrosion inhibitors -- 1.1 Introduction -- 1.1.1 Corrosion and its consequences -- 1.1.2 Corrosion inhibition -- 1.2 Nanomaterials -- 1.2.1 General introduction, types, and synthesis methods -- 1.2.1.1 Bottom-up method -- 1.2.1.2 Top-down approach -- 1.2.2 Characterization of nanomaterials -- 1.3 Nanomaterials as anticorrosive materials -- 1.3.1 Metal/metal oxide nanoparticles as corrosion inhibitors -- 1.3.2 Quantum dots as corrosion inhibitors -- 1.3.3 Nanotubes as corrosion inhibitors -- 1.3.4 Nanofibers as corrosion inhibitors -- 1.3.5 Nano containers as corrosion inhibitors -- 1.3.6 Nanocomposites as corrosion inhibitors -- 1.4 Challenges facing the use of nanomaterials as corrosion inhibitors -- 1.4.1 Toxicity -- 1.4.2 Agglomeration -- 1.4.3 Prediction of mechanism -- 1.5 Conclusion -- 1.6 Future research directions -- Useful links -- References -- 2 Metal oxides: Advanced inorganic materials -- 2.1 Outline of chapter -- 2.2 Introduction to metal oxide and its materials -- 2.2.1 Inorganic oxides -- 2.2.2 Metal oxide -- 2.2.3 Mixed metal oxide -- 2.2.4 Nanotechnology -- 2.3 Synthetic methodologies of metal oxides -- 2.3.1 Physical methods -- 2.3.1.1 Physical vapor deposition -- 2.3.1.2 Milling -- 2.3.1.3 Spray pyrolysis -- 2.3.1.4 Laser ablation -- 2.3.1.5 Inert gas condensation -- 2.3.1.6 Arc discharge -- 2.3.1.7 Thermolysis -- 2.3.2 Chemical methods -- 2.3.2.1 Sol-gel method -- 2.3.2.2 Chemical vapor deposition -- 2.3.2.3 Polyol method -- 2.3.2.4 Electrochemical synthesis -- 2.3.2.5 Sonochemical synthesis -- 2.3.3 Green synthesis or biological methods -- 2.3.3.1 Green synthesis using plant extracts -- 2.3.3.2 Green synthesis using microorganisms. , 2.3.3.3 Green synthesis using biomolecules -- 2.4 Fundamental science and properties of nanometal oxide as advanced material -- 2.4.1 Properties of nanoparticulated oxides -- 2.4.1.1 Optical properties-surface plasmon resonance -- 2.4.1.2 Transport properties -- 2.4.1.3 Mechanical properties -- 2.4.1.4 Chemical properties -- 2.4.1.5 Quantum effects -- 2.5 Review of metal oxide nanomaterials used for varied applications in different fields of research -- 2.6 Application, discussion and future claims -- 2.6.1 Environmental and solar applications -- 2.6.2 Corrosion and electrochemical applications -- 2.6.2.1 Corrosion of Steel in Acidic Solution and Inhibition Mechanism -- 2.6.2.2 Mechanism -- 2.6.2.3 Potential with zero charge -- 2.6.2.4 Factors affecting the efficiency of inhibitors -- 2.6.2.4.1 Disperability-nano metal oxide -- 2.6.3 Biomedical applications -- 2.6.3.1 Drug delivery -- 2.7 Conclusion -- References -- 3 Molecularly imprinted magnetite nanomaterials and its application as corrosion inhibitors -- 3.1 Introduction -- 3.1.1 Effects of coating on magnetite by the silica (Fe3O4/SiO2) nanomaterials -- 3.1.2 Molecularly imprinted nanomaterials (Fe3O4/SiO2/Thermosensitive/EDTA) -- 3.1.2.1 Coupling of chitosan on functionalized EDTA graftted thermosensetive modified magnetite molecularly imprinted nanom... -- 3.1.3 General principle of molecularly imprinted nanomaterials -- 3.1.4 Structure of magnetite nanomaterials -- 3.2 Distinctive synthetic approach of molecularly imprinted magnetite nanomaterials -- 3.2.1 Coprecipitation method -- 3.2.2 Reverse micellar method -- 3.2.3 Sonochemical technique -- 3.2.4 Hydrothermal technique -- 3.2.5 Thermal decomposition technique -- 3.2.6 Sol-gel technique -- 3.3 Functionalization of molecularly imprinted magnetite nanoparticles -- 3.3.1 Silica -- 3.3.2 Metal or nonmetal. , 3.3.3 Metal oxides and metal sulfides -- 3.3.4 Coating of organic compounds on the surface of the magnetite nanoparticles -- 3.3.5 Polymers -- 3.3.6 Biological molecules -- 3.4 Characterization techniques -- 3.4.1 XRD analysis -- 3.4.2 Surface morphology and elemental analysis -- 3.4.3 Vibrating sample magnetometer -- 3.4.4 Dynamic light scattering -- 3.5 Conclusions -- Author declaration -- References -- Further reading -- 4 Basics of metal oxides: properties and applications -- 4.1 Introduction -- 4.2 Properties of metal oxide -- 4.3 Application of metal oxides -- 4.3.1 Cupric oxide -- 4.3.2 Zinc oxide (ZnO) -- 4.3.3 Cobolt oxide (II, III)/Co3O4 -- 4.4 Titanium oxide -- 4.5 Conclusion and future directions -- References -- 5 Recent developments in properties and applications of metal oxides -- 5.1 Introduction -- 5.2 Properties of metal oxides nanoparticles -- 5.3 Diverse applications of metal oxides nanoparticles -- 5.3.1 Gas sensing -- 5.3.2 Batteries -- 5.3.3 Solar cells -- 5.4 Supercapacitor -- 5.4.1 Anticorrosive -- 5.4.2 Photocatalysis -- 5.4.3 Basic principle of TiO2 based photocatalysts -- 5.5 Summary -- References -- 6 Functionally integrated metal oxides for corrosion protection -- 6.1 Introduction -- 6.2 Corrosion protection process -- 6.3 Electrochemical characterization and evaluation techniques -- 6.3.1 Open circuit potential -- 6.3.2 Polarization techniques -- 6.3.2.1 Linear polarization resistance -- 6.3.2.2 Potentiodynamic polarization -- 6.3.2.3 Tafel extrapolation method -- 6.3.2.4 Cyclic polarization -- 6.3.3 Electrochemical impedance spectroscopy -- 6.4 Different transition metals and their characteristics -- 6.4.1 Titanium dioxide (TiO2) -- 6.4.2 Zirconium dioxide (ZrO2) -- 6.4.3 Zinc oxide (ZnO) -- 6.4.4 MoO2 and MoO3 -- 6.5 Coating techniques for the synthesis of corrosion protection -- 6.5.1 Physical vapor deposition. , 6.5.2 Chemical vapor deposition -- 6.5.3 Microarc oxidation -- 6.5.4 Electrodeposition coating -- 6.5.5 Sol-gel coating -- 6.5.6 Thermal spray coating -- 6.5.7 High-velocity oxy-fuel coating -- 6.5.8 Plasma spray coating -- 6.6 Factors affecting the efficiency of mixed metal oxide as corrosion protection -- 6.7 Mixed metal oxide coatings studied for corrosion protection -- 6.7.1 TiO2-ZnO -- 6.7.2 TiO2-ZrO2 -- 6.7.3 MoO2-ZrO2, MoO2-TiO2 -- 6.7.4 Early studies for trimetallic oxides ZrO2-ZnO-TiO2 -- 6.8 Summary -- Useful links -- References -- 7 A prospective utilization of metal oxides for self-cleaning and antireflective coatings -- 7.1 Introduction -- 7.1.1 Classification of metal oxides -- 7.1.1.1 Ferroelectric metal oxides -- 7.1.1.2 Magnetic metal oxides -- 7.1.1.3 Multiferroic metal oxides -- 7.1.2 Nanocomposite metal oxides -- 7.1.3 Properties of metal oxides -- 7.2 Electrical and dielectric properties -- 7.3 Electrochemical properties -- 7.3.1 Metal oxides as self-cleaning and antireflective coatings -- 7.3.2 Application of metal oxides -- 7.3.2.1 Biomedical and healthcare -- 7.3.2.2 Solar energy -- 7.3.2.3 Water purification membranes -- 7.3.2.4 Application in machining and automotive -- 7.4 Conclusion -- References -- II. Metal oxides as corrosion inhibitors -- 8 CeO as corrosion inhibitors -- 8.1 An overview -- 8.2 Cerium (IV) oxide as corrosion inhibitor -- 8.3 Utilization of cerium IV oxide as corrosion inhibitor in the past decade -- Useful links -- References -- 9 Utilization of ZnO-based materials as anticorrosive agents: a review -- 9.1 Introduction -- 9.1.1 Corrosion inhibitors and coatings -- 9.2 Properties of ZnO -- 9.2.1 Corrosion resistance of ZnO nanoparticles -- 9.3 Corrosion resistance of ZnO-based corrosion inhibitors -- 9.4 Corrosion resistance of ZnO-based nanocomposite coatings. , 9.5 Corrosion resistance of ZnO/mixed nanocomposites -- 9.6 Conclusion -- Useful links -- References -- 10 MgO as corrosion inhibitor -- 10.1 Introduction -- 10.2 Synthesis, properties and applications of magnesium oxide -- 10.3 Application of MgO and its composites as a corrosion inhibitor for the protection of metallic materials -- 10.4 Application of MgO and its composites as corrosion inhibitors for the protection of magnesium alloy -- 10.5 Application of MgO and its composites as corrosion inhibitors for the protection of iron and its alloys -- 10.6 Application of MgO and its composites as corrosion inhibitors for protection of cemented carbide -- 10.7 Application of MgO and its composites as corrosion inhibitors for the protection of metallic materials in bioscience -- 10.8 ZnMgO solid solution nanolayer as anticorrosion material -- 10.9 Drawbacks -- 10.10 Conclusion and future perspective -- References -- 11 Copper oxide as a corrosion inhibitor -- 11.1 Introduction -- 11.2 Metallic deterioration and its protection from corrosive environment -- 11.3 Copper oxide as corrosion inhibitor -- 11.4 Summary and future perspective -- References -- 12 Corrosion inhibition by aluminum oxide -- 12.1 Introduction -- 12.2 What is corrosion? -- 12.3 Consequences of corrosion -- 12.4 Methods of controlling corrosion -- 12.5 Corrosion inhibitors -- 12.5.1 Definition of corrosion inhibitors -- 12.5.2 Classification -- 12.5.2.1 Organic inhibitors -- 12.5.2.2 Inorganic inhibitors -- 12.6 Aluminum oxide -- 12.6.1 Influence of pH on aluminum passivation -- 12.6.2 Mechanism of corrosion of aluminum -- 12.7 Potential - pH diagrams -- 12.8 Case study -- 12.8.1 Inhibition of corrosion of aluminum in well water by polyvinyl alcohol, carboxymethyl cellulose, and Zn2+ -- 12.8.2 Electrochemical studies -- 12.8.2.1 Polarization study. , 12.8.2.1.1 Aluminum in well water system (pH 10, adjusted with NaOH).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Singapore : Springer Nature Singapore | Singapore : Imprint: Springer
    Keywords: Refuse and refuse disposal. ; Corrosion and anti-corrosives. ; Nanotechnology. ; Food science.
    Description / Table of Contents: Corrosion: Basics, Adverse Effects and Its Mitigation -- Corrosion Mitigation using Green Chemicals -- Bio-Waste: Introduction, Origin and Management -- Food Waste: Introduction, and Origin -- Food Waste: Environmental Impact Assessment -- Sustainable Management and Valorisation of Food Waste -- Agricultural Waste as Corrosion Inhibitor -- Vegetable and Fruit/Fruit Juice Waste as Corrosion Inhibitor -- Plant Waste as Corrosion Inhibitor -- Slaughterhouse Trash as Corrosion Inhibitor -- Industrial Corrosion Inhibitors: Food Waste as Ideal Substitutes -- Economics and Commercialization of Food Waste as Corrosion Inhibitors.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(X, 277 p. 56 illus., 44 illus. in color.)
    Edition: 1st ed. 2024.
    ISBN: 9789819711604
    Series Statement: Materials Horizons: From Nature to Nanomaterials
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...