GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 11
    facet.materialart.
    Unknown
    Copernicus Publications on behalf of the European Geosciences Union and the American Geophysical Union
    Publication Date: 2022-05-25
    Description: © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Nonlinear Processes in Geophysics 18 (2011): 71-79, doi:10.5194/npg-18-71-2011.
    Description: The region of the Middle East around the Red Sea (between 32° E and 44° E longitude and 12° N and 28° N latitude) is a currently undocumented hotspot for atmospheric gravity waves (AGWs). Satellite imagery shows evidence that this region is prone to relatively high occurrence of AGWs compared to other areas in the world, and reveals the spatial characteristics of these waves. The favorable conditions for wave propagation in this region are illustrated with three typical cases of AGWs propagating in the lower troposphere over the sea. Using weakly nonlinear long wave theory and the observed characteristic wavelengths we obtain phase speeds which are consistent with those observed and typical for AGWs, with the Korteweg-de Vries theory performing slightly better than Benjamin-Davis-Acrivos-Ono theory as far as phase speeds are concerned. ERS-SAR and Envisat-ASAR satellite data analysis between 1993 and 2008 reveals signatures consistent with horizontally propagating large-scale internal waves. These signatures cover the entire Red Sea and are more frequently observed between April and September, although they also occur during the rest of the year. The region's (seasonal) propagation conditions for AGWs, based upon average vertical atmospheric stratification profiles suggest that many of the signatures identified in the satellite images are atmospheric internal waves.
    Description: This research was conducted with support from KAUST (King Abdullah University for Science and Technology) in collaboration with the Woods Hole Oceanographic Institution, Biology Department. Some support was also provided by a Treaty of Windsor Grant awarded by the British Council (Portugal).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marien Ecology Progress Series 476 (2013): 141-151, doi:10.3354/meps10186.
    Description: Gravid adults of the common intertidal barnacle Semibalanus balanoides (L.) brood fully developed larvae until individuals perceive some cue from the environment that triggers synchronous larval release. The prevailing hypothesis has been that phytoplankton blooms trigger release because they provide a food source for nauplius larvae. Through observations and field experiments, we tested the hypothesis that turbidity from any source, not just phytoplankton blooms, can trigger release. We documented five larval release events at three sites in the northeastern United States. Two events coincided with chlorophyll increases, and all five coincided with turbidity increases. In experiments, the larval release response was equivalent when adults were exposed to diatoms or inert synthetic beads, and it was significantly higher than under exposure to filtered seawater. We also tested the hypothesis that turbidity can decrease the risk of cannibalism for newly-released nauplii. Under experimentally manipulated conditions, adults consumed significantly fewer nauplii in a high-turbidity environment. We suggest that reproduction in this species may have evolved to coincide roughly with the local onset of winter/spring phytoplankton blooms, but the timing of larval release may have been fine-tuned further by cannibalism and predation pressures. The potential for turbid conditions to serve as a refuge for planktonic larvae of other marine organisms merits further investigation.
    Description: Support for this work came from a National Science Foundation Graduate Research Fellowship and a student award from the Coastal Ocean Institute at Woods Hole Oceanographic Institution (both to JG).
    Keywords: Synchrony ; Turbidity ; Reproduction ; Larvae ; Cannibalism ; Barnacles
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 2555–2570, doi:10.1002/2014JC010564.
    Description: We tested the hypothesis that humpback whales aggregate at the southern flank of Stellwagen Bank (SB) in response to internal waves (IWs) generated semidiurnally at Race Point (RP) channel because of the presence of their preferred prey, planktivorous fish, which in turn respond to zooplankton concentrated by the predictable IWs. Analysis of synthetic aperture radar (SAR) images indicates that RP IWs approach the southern flank of SB frequently (∼62% of the images). Published reports of whale sighting data and archived SAR images point to a coarse spatial coincidence between whales and Race Point IWs at SB's southern flank. The responses of whales to IWs were evaluated via sightings and behavior of humpback whales, and IWs were observed in situ by acoustic backscatter and temperature measurements. Modeling of IWs complemented the observations, and results indicate a change of ∼0.4 m/s in current velocity, and ∼1.5 Pa in dynamic pressure near the bottom, which may be sufficient for bottom fish to detect the IWs. However, fish were rare in our acoustic observations, and fish response to the IWs could not be evaluated. RP IWs do not represent the leading edge of the internal tide, and they may have less mass-transport potential than typical coastal IWs. There was large interannual variability in whale sightings at SB's southern flank, with decreases in both numbers of sightings and proportion of sightings where feeding was observed from 2008 to 2013. Coincidence of whales and IWs was inconsistent, and results do not support the hypothesis.
    Description: We would also like to acknowledge funding from the National Oceanic and Atmospheric Administration Sea Grant (Woods Hole), the Woods Hole Oceanographic Institution, the ESA, and the German Aerospace Center.
    Description: 2015-10-02
    Keywords: Humpback whales ; Nonlinear internal waves ; Shallow temperate bank ; Ecological hotspots
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Continental Shelf Research 26 (2006): 885-901, doi:10.1016/j.csr.2006.01.017.
    Description: The effects of the 1997-98 and 2002-04 El Ni˜no on the upper waters in the con- tinental shelf and slope regions off northwestern Baja California are explored with data from eight cruises taken in late spring from 1998 to 2004 and the summers of 1997 and 1998. Geostrophic velocities were calculated referenced to a specific vol- ume anomaly surface separating the southward flowing California Current waters from the waters advected to the north by the California Undercurrent. The result- ing fields show equatorward flow near the surface except in the summer of 1997, when a poleward jet was found in the upper 40 dbars. This shallow jet advected anomalously warm and salty waters characteristic of the 1997-98 El Ni˜no, with its core found within 20-30 kms from the coast. By spring of 1998, the waters brought into the region by the jet had mixed across the pycnoline with the salty California Undercurrent waters below, resulting in high salinity levels on the density surfaces corresponding to the otherwise fresh California Current waters (25-26¾t). By con- trast, the 2002-04 El Ni˜no stands out for the very fresh and cold waters found on the same density surfaces in late spring of 2003 and 2004, marking a pronounced presence of subarctic waters. The fresh conditions found on the latter years repre- sent a nearshore expresion of the anomalous intrusion of subarctic waters observed 50-150 km from the coast of Southern California and Punta Eugenia, reported from July 2002 until April 2003. Our results suggest that the presence of this intrusion has continued to influence the region at least until May 2004.
    Description: This work was supported by the US NSF (OCE-9986627 and OCE-0083976).
    Keywords: El Nino phenomena ; Coastal currents ; Coastal upwelling ; Hydrography ; California Current System ; Mexico ; Northwestern Baja California ; Geographic bounding coordinates: (33◦00’N, 117◦45’W) – (31◦40’N, 116◦30’W)
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 1870213 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-25
    Description: This report is not copyrighted. The definitive version was published in California Cooperative Oceanic Fisheries Investigations Reports 48 (2007): 204-214.
    Description: We compared the NOAA Southwest Fisheries Science Center’s Environmental Research Division (formerly Pacific Fisheries Environmental Laboratory: PFEL) coastal upwelling indices along the northern Baja California coast with those derived from winds measured by coastal meteorological stations and estimated by the QuikSCAT satellite. With the exception of the PFEL series at 33°N, the three data sets compare reasonably well, having similar typical year patterns, correlations 〉0.6, and significant coherences for periods three to five days or longer. By contrast, the seasonal variations, the timing and magnitude of maximum upwelling, and the variability of the PFEL indices at 33°N are significantly different compared to all the other time series, including QuikSCAT at that location. The performance of the QuikSCAT winds close to shore was evaluated using the coastal meteorological station data. Although large root-meansquare (RMS) errors in direction were found for the QuikSCAT winds, both datasets have properties similar to the variance ellipses, and show reasonable coherences for frequencies in the weather band and lower, particularly south of 33°N.
    Description: This project was partially funded by the U.S. National Science Foundation through grants to J. P. and M. L.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-25
    Description: Author Posting. © Oceanography Society, 2007. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 20, 3 (2007): 14-21.
    Description: There is growing consensus that life within the world’s ocean is under considerable and increasing stress from human activities (Hutchings, 2000; Jackson et al., 2001). This unprecedented strain on both the structure and function of marine ecosystems has led to calls for new management approaches to counter anthropogenic impacts in the coastal ocean (Botsford et al., 1997; Browman and Stergiou, 2004: Pikitch et al., 2004). Spatial management, including Marine Protected Areas (MPAs), has been touted as a method for both conserving biodiversity and managing fisheries (Agardy, 1997). Continuing debates on the efficacy of MPAs have identified the need for models that capture the spatial dynamics of marine populations, especially with respect to larval dispersal (Willis et al., 2003; Sale et al., 2005). Theoretical studies suggest that population connectivity plays a fundamental role in local and metapopulation dynamics, community dynamics and structure, genetic diversity, and the resiliency of populations to human exploitation (Hastings and Harrison, 1994; Botsford et al., 2001). Modeling efforts have been hindered, however, by the paucity of empirical estimates of, and knowledge of the processes controlling, population connectivity in ocean ecosystems. While progress has been made with older life stages, the larval-dispersal component of connectivity remains unresolved for most marine populations. This lack of knowledge represents a fundamental obstacle to obtaining a comprehensive understanding of the population dynamics of marine organisms. Furthermore, a lack of spatial context that such information would provide has limited the ability of ecologists to evaluate the design and potential benefits of novel conservation and resource-management strategies.
    Description: Over the years, we have each received support from a variety of agencies in support of research relevant to Population Connectivity; in addition to NSF, we acknowledge funding from the World Bank/GEF Coral Reef Targeted Research Program, University of Miami’s Maytag Chair in Ichthyology, the Oak Foundation, and the Woods Hole Oceanographic Institution
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PeerJ 3 (2015): e926, doi:10.7717/peerj.926.
    Description: The barnacle Chthamalus fragilis is found along the US Atlantic seaboard historically from the Chesapeake Bay southward, and in the Gulf of Mexico. It appeared in New England circa 1900 coincident with warming temperatures, and is now a conspicuous member of rocky intertidal communities extending through the northern shore of Cape Cod, Massachusetts. The origin of northern C. fragilis is debated. It may have spread to New England from the northern end of its historic range through larval transport by ocean currents, possibly mediated by the construction of piers, marinas, and other anthropogenic structures that provided new hard substrate habitat. Alternatively, it may have been introduced by fouling on ships originating farther south in its historic distribution. Here we examine mitochondrial cytochrome c oxidase I sequence diversity and the distribution of mitochondrial haplotypes of C. fragilis from 11 localities ranging from Cape Cod, to Tampa Bay, Florida. We found significant genetic structure between northern and southern populations. Phylogenetic analysis revealed three well-supported reciprocally monophyletic haplogroups, including one haplogroup that is restricted to New England and Virginia populations. While the distances between clades do not suggest cryptic speciation, selection and dispersal barriers may be driving the observed structure. Our data are consistent with an expansion of C. fragilis from the northern end of its mid-19th century range into Massachusetts.
    Description: Funding was provided by the Woods Hole Oceanographic Institution in an Independent Study Award to J Pineda and AF Govindarajan, a WHOI summer fellowship to F Bukša, and NSF Biological Oceanography #1029526 to JP Wares.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Copernicus Publications on behalf of the European Geosciences Union
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Ecology Progress Series 595 (2018): 105-122, doi:10.3354/meps12561.
    Description: Vertical and cross-shore distributions and abundances of shallow-water barnacle larvae were characterized in La Jolla, southern California (USA), during a 2 yr period. Five stations located within 1 km of shore and ranging from 4-12 m water depths were sampled intensively in 2 m depth intervals during 27 cruises throughout spring-summer (April-July) and fall-winter (October-December) of 2014 and 2015. Larval abundances significantly decreased from 2014 to 2015, which could be related to the arrival of a warm-water anomaly (the so-called ‘Blob’) in 2014 and El Niño conditions in 2015. Despite the presence of these large-scale regional disturbances, vertical and cross-shore larval distributions were consistent throughout the 2 yr study period. Early-stage nauplii and Chthamalus fissus cyprids tracked bottom depth, and cyprids were on average deeper than nauplii. Vertical distributions were not related to the mid-depth of the thermocline or thermal stratification. Early-stage nauplii had a broader cross-shore distribution than cyprids, which were concentrated at inshore stations. Nearshore cyprid concentration had a positive relationship with thermal stratification, and the center of distribution of cyprids was farther offshore during fall-winter when stratification decreased. These results suggest that thermal stratification elicits enhanced behavioral control of cyprids to remain close to shore and reach the adult habitat.
    Description: This material is based upon work supported by the National Science Foundation under grants OCE-1357290, OCE-1357327, OCE-1630459, and OCE- 1630474. Support was also provided by the University of San Diego and Woods Hole Oceanographic Institution.
    Keywords: Barnacle larvae ; Chthamalus fissus ; Early-stage nauplii ; Cyprids ; Hydrographic and hydrodynamic conditions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2005. This is the author's version of the work. It is posted here by permission of American Society of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 50 (2005): 1520-1528.
    Description: Late stage larvae (cyprids) of the barnacle Semibalanus balanoides frequently encounter freezing conditions along the northwest Atlantic coast. S. balanoides cyprids survived for more than 4 weeks embedded in sea ice, and a significant fraction of larvae held in ice up to 2 weeks successfully settled and metamorphosed after thawing. Larvae that completed metamorphosis continued to develop and reproduce. In settlement experiments with cyprids of known age and where settled cyprids were removed every other day from the experimental containers, cyprids held in ice for 2 weeks settled and metamorphosed more than nonfrozen larvae. Mean time to metamorphosis was longer for frozen cyprids than for nonfrozen ones, and maximum time to metamorphosis was 38 d for cyprids held in sea ice for 2 weeks and 26 d for cyprids in nonfrozen treatments. Larval tolerance to freezing conditions greatly expands the environmental tolerance repertoire of marine invertebrates and may help explain the ecological success of this widespread intertidal species.
    Description: This work was supported by the U.S. National Science Foundation (OCE-9986627 and OCE-0083976).
    Keywords: Semibalanus balanoides ; Larval tolerance ; Freezing conditions
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 506617 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Experimental Marine Biology and Ecology 392 (2010): 9-21, doi:10.1016/j.jembe.2010.04.008.
    Description: Marine broadcast spawners have two-phase life cycles, with pelagic larvae and benthic adults. Larval supply and settlement link these two phases and are crucial for the persistence of marine populations. Mainly due to the complexity in sampling larval supply accurately, many researchers use settlement as a proxy for larval supply. Larval supply is a constraining variable for settlement because, without larval supply, there is no settlement. Larval supply and settlement may not be well correlated, however, and settlement may not consistently estimate larval supply. This paper explores the argument that larval supply (i.e., larval abundance near settlement sites) may not relate linearly to settlement. We review the relationship between larval supply and settlement, from estimates and biases in larval supply sampling, to non-behavioral and behavioral components, including small-scale hydrodynamics, competency, gregarious behavior, intensification of settlement, lunar periodicity, predation and cannibalism. Physical and structural processes coupled with behavior, such as small-scale hydrodynamics and intensification of settlement, sometimes result in under- or overestimation of larval supply, where it is predicted from a linear relationship with settlement. Although settlement is a function of larval supply, spatial and temporal processes interact with larval behavior to distort the relationship between larval supply and settlement, and when these distortions act consistently in time and space, they cause biased estimates of larval supply from settlement data. Most of the examples discussed here suggest that behavior is the main source of the decoupling between larval supply and settlement because larval behavior affects the vertical distribution of larvae, the response of larvae to hydrodynamics, intensification of settlement, gregariousness, predation and cannibalism. Thus, larval behavior seems to limit broad generalizations on the regulation of settlement by larval supply. Knowledge of the relationship is further hindered by the lack of a well founded theoretical relationship between the two variables. The larval supply- settlement transition may have strong general consequences for population connectivity, since larval supply is a result of larval transport, and settlement constrains recruitment. Thus, measuring larval supply and settlement effectively allows more accurate quantification and understanding of larval transport, recruitment and population connectivity.
    Description: JP would like to thank WHOI Ocean Life Institute for partial funding. FP’s contribution is based upon research supported by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation.
    Keywords: Invertebrates ; Behavior ; Barnacle
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...