GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Publisher
  • 11
    Publication Date: 2024-03-15
    Keywords: Acid-base regulation; Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Category; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Cromarty_Bay; EXP; Experiment; Experiment duration; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Haemolymph, bicarbonate ion; Haemolymph, partial pressure of carbon dioxide; Identification; Laboratory experiment; Mollusca; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, extracellular; Registration number of species; Saccostrea glomerata; Salinity; Single species; South Pacific; Species; Temperate; Temperature, water; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 1333 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Parker, Laura M; O'Connor, Wayne A; Byrne, Maria; Coleman, Ross A; Virtue, Patti; Dove, Michael; Gibbs, Mitchell; Spohr, Lorraine; Scanes, Elliot; Ross, Pauline M (2017): Adult exposure to ocean acidification is maladaptive for larvae of the Sydney rock oyster Saccostrea glomerata in the presence of multiple stressors. Biology Letters, 13(2), 20160798, https://doi.org/10.1098/rsbl.2016.0798
    Publication Date: 2024-03-15
    Description: Parental effects passed from adults to their offspring have been identified as a source of rapid acclimation that may allow marine populations to persist as our surface oceans continue to decrease in pH. Little is known, however, whether parental effects are beneficial for offspring in the presence of multiple stressors. We exposed adults of the oyster Saccostrea glomerata to elevated CO2 and examined the impacts of elevated CO2 (control = 392; 856 µatm) combined with elevated temperature (control = 24; 28°C), reduced salinity (control = 35; 25) and reduced food concentration (control = full; half diet) on their larvae. Adult exposure to elevated CO2 had a positive impact on larvae reared at elevated CO2 as a sole stressor, which were 8% larger and developed faster at elevated CO2 compared with larvae from adults exposed to ambient CO2 These larvae, however, had significantly reduced survival in all multistressor treatments. This was particularly evident for larvae reared at elevated CO2 combined with elevated temperature or reduced food concentration, with no larvae surviving in some treatment combinations. Larvae from CO2-exposed adults had a higher standard metabolic rate. Our results provide evidence that parental exposure to ocean acidification may be maladaptive when larvae experience multiple stressors.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Egg size; Egg size, standard error; EXP; Experiment; Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Hastings_river; Identification; Laboratory experiment; Larval stages; Lipids; Metabolic rate of oxygen per individual; Mollusca; Mortality/Survival; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Range; Registration number of species; Replicate; Reproduction; Saccostrea glomerata; Salinity; Shell length; Single species; South Pacific; Species; Survival; Temperature; Temperature, water; Treatment; Type; Uniform resource locator/link to reference; Variance
    Type: Dataset
    Format: text/tab-separated-values, 3516 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-05-24
    Description: It is essential to predict the impact of elevated PCO2 on marine organisms and habitats to anticipate the severity and consequences of future ocean chemistry change. Despite the importance of carry-over effects in the evolutionary history of marine organisms, few studies have considered links between life-history stages when determining how marine organisms will respond to elevated PCO2, and none have considered the link between adults and their offspring. Herein, we exposed adults of wild and selectively bred Sydney rock oysters, Saccostrea glomerata to elevated PCO2 during reproductive conditioning and measured the development, growth and survival response of their larvae. We found that elevated PCO2 had a negative impact on larvae of S. glomerata causing a reduction in growth, rate of development and survival. Exposing adults to elevated PCO2 during reproductive conditioning, however, had positive carry-over effects on larvae. Larvae spawned from adults exposed to elevated PCO2 were larger and developed faster, but displayed similar survival compared with larvae spawned from adults exposed to ambient PCO2. Furthermore, selectively bred larvae of S. glomerata were more resilient to elevated PCO2 than wild larvae. Measurement of the standard metabolic rate (SMR) of adult S. glomerata showed that at ambient PCO2, SMR is increased in selectively bred compared with wild oysters and is further increased during exposure to elevated PCO2. This study suggests that sensitive marine organisms may have the capacity to acclimate or adapt to elevated PCO2 over the next century and a change in energy turnover indicated by SMR may be a key process involved.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Brackish waters; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Containers and aquaria (20-1000 L or 〈 1 m**2); Day of experiment; Development; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Larvae; Metabolic rate of oxygen, per dry mass, standard; Mollusca; Mortality/Survival; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard error; Potentiometric; Potentiometric titration; Registration number of species; Replicate; Respiration; Saccostrea glomerata; Salinity; Salinity, standard error; Shell length; Single species; South Pacific; Species; Survival; Temperate; Temperature, water; Temperature, water, standard error; Treatment; Type; Uniform resource locator/link to reference; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 14399 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-05-24
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Category; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Cromarty_Bay; EXP; Experiment; Experiment duration; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Mollusca; Other metabolic rates; Oxygen consumption, per protein; Oxygen demand, net, per dry mass; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Percentage; pH; Registration number of species; Respiration; Saccostrea glomerata; Salinity; Single species; South Pacific; Species; Table; Temperate; Temperature, water; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 1890 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  EPIC34th International Symposium on the Ocean in a High-CO2 World, Hobart, Tasmania, Australia, 2016-05-03-2016-05-06
    Publication Date: 2016-06-11
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  EPIC3The Journal of Experimental Biology, 220(5), pp. 765-774, ISSN: 0022-0949
    Publication Date: 2017-06-09
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-09-01
    Description: The wellbeing of marine organisms is connected to their microbiome. Oysters are a vital food source and provide ecological services, yet little is known about how climate change such as ocean acidification and warming will affect their microbiome. We exposed the Sydney rock oyster, Saccostrea glomerata, to orthogonal combinations of temperature (24, 28 degrees C) and pCO(2) (400 and 1000 mu atm) for eight weeks and used amplicon sequencing of the 16S rRNA (V3-V4) gene to characterise the bacterial community in haemolymph. Overall, elevated pCO(2) and temperature interacted to alter the microbiome of oysters, with a clear partitioning of treatments in CAP ordinations. Elevated pCO(2) was the strongest driver of species diversity and richness and elevated temperature also increased species richness. Climate change, both ocean acidification and warming, will alter the microbiome of S. glomerata which may increase the susceptibility of oysters to disease.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-09-03
    Description: Oyster microbiomes are integral to healthy function and can be altered by climate change conditions. Genetic variation among oysters is known to influence the response of oysters to climate change and may ameliorate any adverse effects on oyster microbiome, however, this remains unstudied. Nine full-sibling selected breeding lines of the Sydney rock oyster (Saccostrea glomerata) were exposed to predicted warming (ambient = 24°C, elevated = 28°C) and ocean acidification (ambient pCO2 = 400, elevated pCO2 = 1000 µatm) for four weeks. The haemolymph bacterial microbiome was characterised using 16S rRNA (V3-V4) gene sequencing and varied among oyster lines in the control (ambient pCO2, 24°C) treatment. Microbiomes were also altered by climate change dependent on oyster lines. Bacterial α-diversity increased in response to elevated pCO2 in two selected lines, while bacterial β-diversity was significantly altered by combinations of elevated pCO2 and temperature in four selected lines. Climate change treatments caused shifts in the abundance of multiple Amplicon Sequence Variants (ASVs) driving change in the microbiome of some selected lines. We show that oyster genetic background may influence the Sydney rock oyster haemolymph microbiome under climate change and that future assisted evolution breeding programs to enhance resilience should consider the oyster microbiome.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...