GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Singapore : Springer Nature Singapore | Singapore : Imprint: Springer
    Schlagwort(e): Refuse and refuse disposal. ; Corrosion and anti-corrosives. ; Nanotechnology. ; Food science.
    Beschreibung / Inhaltsverzeichnis: Corrosion: Basics, Adverse Effects and Its Mitigation -- Corrosion Mitigation using Green Chemicals -- Bio-Waste: Introduction, Origin and Management -- Food Waste: Introduction, and Origin -- Food Waste: Environmental Impact Assessment -- Sustainable Management and Valorisation of Food Waste -- Agricultural Waste as Corrosion Inhibitor -- Vegetable and Fruit/Fruit Juice Waste as Corrosion Inhibitor -- Plant Waste as Corrosion Inhibitor -- Slaughterhouse Trash as Corrosion Inhibitor -- Industrial Corrosion Inhibitors: Food Waste as Ideal Substitutes -- Economics and Commercialization of Food Waste as Corrosion Inhibitors.
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource(X, 277 p. 56 illus., 44 illus. in color.)
    Ausgabe: 1st ed. 2024.
    ISBN: 9789819711604
    Serie: Materials Horizons: From Nature to Nanomaterials
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier,
    Schlagwort(e): Inorganic compounds-Analysis. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (426 pages)
    Ausgabe: 1st ed.
    ISBN: 9780323904117
    DDC: 661
    Sprache: Englisch
    Anmerkung: Front Cover -- Inorganic Anticorrosive Materials -- Copyright Page -- Contents -- List of contributors -- I. Overview on metal oxides -- 1 Nanomaterials as corrosion inhibitors -- 1.1 Introduction -- 1.1.1 Corrosion and its consequences -- 1.1.2 Corrosion inhibition -- 1.2 Nanomaterials -- 1.2.1 General introduction, types, and synthesis methods -- 1.2.1.1 Bottom-up method -- 1.2.1.2 Top-down approach -- 1.2.2 Characterization of nanomaterials -- 1.3 Nanomaterials as anticorrosive materials -- 1.3.1 Metal/metal oxide nanoparticles as corrosion inhibitors -- 1.3.2 Quantum dots as corrosion inhibitors -- 1.3.3 Nanotubes as corrosion inhibitors -- 1.3.4 Nanofibers as corrosion inhibitors -- 1.3.5 Nano containers as corrosion inhibitors -- 1.3.6 Nanocomposites as corrosion inhibitors -- 1.4 Challenges facing the use of nanomaterials as corrosion inhibitors -- 1.4.1 Toxicity -- 1.4.2 Agglomeration -- 1.4.3 Prediction of mechanism -- 1.5 Conclusion -- 1.6 Future research directions -- Useful links -- References -- 2 Metal oxides: Advanced inorganic materials -- 2.1 Outline of chapter -- 2.2 Introduction to metal oxide and its materials -- 2.2.1 Inorganic oxides -- 2.2.2 Metal oxide -- 2.2.3 Mixed metal oxide -- 2.2.4 Nanotechnology -- 2.3 Synthetic methodologies of metal oxides -- 2.3.1 Physical methods -- 2.3.1.1 Physical vapor deposition -- 2.3.1.2 Milling -- 2.3.1.3 Spray pyrolysis -- 2.3.1.4 Laser ablation -- 2.3.1.5 Inert gas condensation -- 2.3.1.6 Arc discharge -- 2.3.1.7 Thermolysis -- 2.3.2 Chemical methods -- 2.3.2.1 Sol-gel method -- 2.3.2.2 Chemical vapor deposition -- 2.3.2.3 Polyol method -- 2.3.2.4 Electrochemical synthesis -- 2.3.2.5 Sonochemical synthesis -- 2.3.3 Green synthesis or biological methods -- 2.3.3.1 Green synthesis using plant extracts -- 2.3.3.2 Green synthesis using microorganisms. , 2.3.3.3 Green synthesis using biomolecules -- 2.4 Fundamental science and properties of nanometal oxide as advanced material -- 2.4.1 Properties of nanoparticulated oxides -- 2.4.1.1 Optical properties-surface plasmon resonance -- 2.4.1.2 Transport properties -- 2.4.1.3 Mechanical properties -- 2.4.1.4 Chemical properties -- 2.4.1.5 Quantum effects -- 2.5 Review of metal oxide nanomaterials used for varied applications in different fields of research -- 2.6 Application, discussion and future claims -- 2.6.1 Environmental and solar applications -- 2.6.2 Corrosion and electrochemical applications -- 2.6.2.1 Corrosion of Steel in Acidic Solution and Inhibition Mechanism -- 2.6.2.2 Mechanism -- 2.6.2.3 Potential with zero charge -- 2.6.2.4 Factors affecting the efficiency of inhibitors -- 2.6.2.4.1 Disperability-nano metal oxide -- 2.6.3 Biomedical applications -- 2.6.3.1 Drug delivery -- 2.7 Conclusion -- References -- 3 Molecularly imprinted magnetite nanomaterials and its application as corrosion inhibitors -- 3.1 Introduction -- 3.1.1 Effects of coating on magnetite by the silica (Fe3O4/SiO2) nanomaterials -- 3.1.2 Molecularly imprinted nanomaterials (Fe3O4/SiO2/Thermosensitive/EDTA) -- 3.1.2.1 Coupling of chitosan on functionalized EDTA graftted thermosensetive modified magnetite molecularly imprinted nanom... -- 3.1.3 General principle of molecularly imprinted nanomaterials -- 3.1.4 Structure of magnetite nanomaterials -- 3.2 Distinctive synthetic approach of molecularly imprinted magnetite nanomaterials -- 3.2.1 Coprecipitation method -- 3.2.2 Reverse micellar method -- 3.2.3 Sonochemical technique -- 3.2.4 Hydrothermal technique -- 3.2.5 Thermal decomposition technique -- 3.2.6 Sol-gel technique -- 3.3 Functionalization of molecularly imprinted magnetite nanoparticles -- 3.3.1 Silica -- 3.3.2 Metal or nonmetal. , 3.3.3 Metal oxides and metal sulfides -- 3.3.4 Coating of organic compounds on the surface of the magnetite nanoparticles -- 3.3.5 Polymers -- 3.3.6 Biological molecules -- 3.4 Characterization techniques -- 3.4.1 XRD analysis -- 3.4.2 Surface morphology and elemental analysis -- 3.4.3 Vibrating sample magnetometer -- 3.4.4 Dynamic light scattering -- 3.5 Conclusions -- Author declaration -- References -- Further reading -- 4 Basics of metal oxides: properties and applications -- 4.1 Introduction -- 4.2 Properties of metal oxide -- 4.3 Application of metal oxides -- 4.3.1 Cupric oxide -- 4.3.2 Zinc oxide (ZnO) -- 4.3.3 Cobolt oxide (II, III)/Co3O4 -- 4.4 Titanium oxide -- 4.5 Conclusion and future directions -- References -- 5 Recent developments in properties and applications of metal oxides -- 5.1 Introduction -- 5.2 Properties of metal oxides nanoparticles -- 5.3 Diverse applications of metal oxides nanoparticles -- 5.3.1 Gas sensing -- 5.3.2 Batteries -- 5.3.3 Solar cells -- 5.4 Supercapacitor -- 5.4.1 Anticorrosive -- 5.4.2 Photocatalysis -- 5.4.3 Basic principle of TiO2 based photocatalysts -- 5.5 Summary -- References -- 6 Functionally integrated metal oxides for corrosion protection -- 6.1 Introduction -- 6.2 Corrosion protection process -- 6.3 Electrochemical characterization and evaluation techniques -- 6.3.1 Open circuit potential -- 6.3.2 Polarization techniques -- 6.3.2.1 Linear polarization resistance -- 6.3.2.2 Potentiodynamic polarization -- 6.3.2.3 Tafel extrapolation method -- 6.3.2.4 Cyclic polarization -- 6.3.3 Electrochemical impedance spectroscopy -- 6.4 Different transition metals and their characteristics -- 6.4.1 Titanium dioxide (TiO2) -- 6.4.2 Zirconium dioxide (ZrO2) -- 6.4.3 Zinc oxide (ZnO) -- 6.4.4 MoO2 and MoO3 -- 6.5 Coating techniques for the synthesis of corrosion protection -- 6.5.1 Physical vapor deposition. , 6.5.2 Chemical vapor deposition -- 6.5.3 Microarc oxidation -- 6.5.4 Electrodeposition coating -- 6.5.5 Sol-gel coating -- 6.5.6 Thermal spray coating -- 6.5.7 High-velocity oxy-fuel coating -- 6.5.8 Plasma spray coating -- 6.6 Factors affecting the efficiency of mixed metal oxide as corrosion protection -- 6.7 Mixed metal oxide coatings studied for corrosion protection -- 6.7.1 TiO2-ZnO -- 6.7.2 TiO2-ZrO2 -- 6.7.3 MoO2-ZrO2, MoO2-TiO2 -- 6.7.4 Early studies for trimetallic oxides ZrO2-ZnO-TiO2 -- 6.8 Summary -- Useful links -- References -- 7 A prospective utilization of metal oxides for self-cleaning and antireflective coatings -- 7.1 Introduction -- 7.1.1 Classification of metal oxides -- 7.1.1.1 Ferroelectric metal oxides -- 7.1.1.2 Magnetic metal oxides -- 7.1.1.3 Multiferroic metal oxides -- 7.1.2 Nanocomposite metal oxides -- 7.1.3 Properties of metal oxides -- 7.2 Electrical and dielectric properties -- 7.3 Electrochemical properties -- 7.3.1 Metal oxides as self-cleaning and antireflective coatings -- 7.3.2 Application of metal oxides -- 7.3.2.1 Biomedical and healthcare -- 7.3.2.2 Solar energy -- 7.3.2.3 Water purification membranes -- 7.3.2.4 Application in machining and automotive -- 7.4 Conclusion -- References -- II. Metal oxides as corrosion inhibitors -- 8 CeO as corrosion inhibitors -- 8.1 An overview -- 8.2 Cerium (IV) oxide as corrosion inhibitor -- 8.3 Utilization of cerium IV oxide as corrosion inhibitor in the past decade -- Useful links -- References -- 9 Utilization of ZnO-based materials as anticorrosive agents: a review -- 9.1 Introduction -- 9.1.1 Corrosion inhibitors and coatings -- 9.2 Properties of ZnO -- 9.2.1 Corrosion resistance of ZnO nanoparticles -- 9.3 Corrosion resistance of ZnO-based corrosion inhibitors -- 9.4 Corrosion resistance of ZnO-based nanocomposite coatings. , 9.5 Corrosion resistance of ZnO/mixed nanocomposites -- 9.6 Conclusion -- Useful links -- References -- 10 MgO as corrosion inhibitor -- 10.1 Introduction -- 10.2 Synthesis, properties and applications of magnesium oxide -- 10.3 Application of MgO and its composites as a corrosion inhibitor for the protection of metallic materials -- 10.4 Application of MgO and its composites as corrosion inhibitors for the protection of magnesium alloy -- 10.5 Application of MgO and its composites as corrosion inhibitors for the protection of iron and its alloys -- 10.6 Application of MgO and its composites as corrosion inhibitors for protection of cemented carbide -- 10.7 Application of MgO and its composites as corrosion inhibitors for the protection of metallic materials in bioscience -- 10.8 ZnMgO solid solution nanolayer as anticorrosion material -- 10.9 Drawbacks -- 10.10 Conclusion and future perspective -- References -- 11 Copper oxide as a corrosion inhibitor -- 11.1 Introduction -- 11.2 Metallic deterioration and its protection from corrosive environment -- 11.3 Copper oxide as corrosion inhibitor -- 11.4 Summary and future perspective -- References -- 12 Corrosion inhibition by aluminum oxide -- 12.1 Introduction -- 12.2 What is corrosion? -- 12.3 Consequences of corrosion -- 12.4 Methods of controlling corrosion -- 12.5 Corrosion inhibitors -- 12.5.1 Definition of corrosion inhibitors -- 12.5.2 Classification -- 12.5.2.1 Organic inhibitors -- 12.5.2.2 Inorganic inhibitors -- 12.6 Aluminum oxide -- 12.6.1 Influence of pH on aluminum passivation -- 12.6.2 Mechanism of corrosion of aluminum -- 12.7 Potential - pH diagrams -- 12.8 Case study -- 12.8.1 Inhibition of corrosion of aluminum in well water by polyvinyl alcohol, carboxymethyl cellulose, and Zn2+ -- 12.8.2 Electrochemical studies -- 12.8.2.1 Polarization study. , 12.8.2.1.1 Aluminum in well water system (pH 10, adjusted with NaOH).
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Biosurfactants. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (568 pages)
    Ausgabe: 1st ed.
    ISBN: 9783031216824
    DDC: 668.1
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- About the Editors -- Part I: Overview and Economic Aspect of Biosurfactants Production -- Biosurfactants: Types, Sources, and Production -- 1 Introduction -- 2 The Superiority of Biosurfactants Over Other Synthetic and Plant-Based Surfactants -- 3 Global Biosurfactant Market -- 4 Types of Biosurfactants -- 5 Sources of Production of Biosurfactants -- 6 Factors Affecting Biosurfactants Production -- 7 Challenges and Future Research Directions -- 8 Conclusion -- References -- Innovative and Sustainable Production Processes for Biosurfactants -- 1 Introduction -- 2 Sustainable Approaches to Biosurfactant Production in Submerged Fermentation Using Low-Cost Substrates -- 2.1 The Use of Renewable Resources for Glycolipids Production -- 2.2 The Use of Renewable Resources for Lipopeptide Production -- 2.3 Research Needs and Future Directions to Sustainable BS Production in Submerged Bioprocesses -- 3 Solid-State Fermentation as a Sustainable Technology for Biosurfactant Production -- 3.1 The Use of Food and Agro-industrial Wastes for Biosurfactant Production by SSF -- 3.2 Challenges and Perspectives -- 4 Genetically Enhanced and Hyper-Producing Recombinant Strains -- 5 Biosurfactant Co-production -- 6 Final Considerations -- References -- Sustainable Production of Biosurfactants Using Waste Substrates -- 1 Introduction -- 2 Biosurfactant Production from Wastes -- 2.1 Rhamnolipids -- 2.2 Lipopeptides -- 2.3 Sophorolipids -- 2.4 Other Biosurfactants -- 3 Discussion -- 4 Conclusions and Future Directions -- References -- Characterization and Purification of Biosurfactants -- 1 Introduction -- 2 Properties of Biosurfactants -- 2.1 Critical Micelle Concentration (CMC) -- 2.2 Temperature and pH Tolerance -- 2.3 Biodegradability -- 2.4 Specificity -- 2.5 Emulsion Forming/Breaking -- 2.6 Antiadhesive Agents. , 3 Classification of Microbial Biosurfactant -- 3.1 Glycolipids -- 3.2 Lipopeptide -- 3.3 Neutral Lipids, Fatty Acids, and Phospholipids -- 4 Factors Affecting Biosurfactants -- 4.1 Carbon Source in Biosurfactant Production -- 4.2 Nitrogen Source in Biosurfactant Production -- 4.3 pH -- 4.4 Aeration and Agitation -- 4.5 Salinity -- 5 Characterization of Biosurfactant -- 5.1 Biochemical Assays -- 5.2 Thin-Layer Chromatography/Purified Biosurfactant Fractions -- 5.3 Product Analysis by Liquid Chromatography-Mass Spectrometry (LC-MS) -- 5.4 Fourier Transform Infrared Spectroscopy (FTIR) -- 5.5 Gas Chromatography-Mass Spectrometry (GC-MS) -- 5.6 Electrospray Ionization Mass Spectrometry (ESI-MS) -- 5.7 High-Performance Liquid Chromatography (HPLC) -- 6 Extraction and Purification of Biosurfactant -- 7 Purification -- 8 Conclusion -- References -- Biodegradation and Cytotoxic Effects of Biosurfactants -- 1 Introduction -- 2 Molecular Weight-Based Categorization of Biosurfactants -- 2.1 Low-Molecular-Weight Biosurfactants -- 2.1.1 Glycolipids -- 2.1.1.1 Rhamnolipids -- 2.1.1.2 Sophorolipids -- 2.1.1.3 Trehalolipids -- 2.1.2 Phospholipids -- 2.1.3 Lipopeptides -- 2.2 High-Molecular-Weight Biosurfactants -- 2.2.1 Lipopolysaccharides and Amphipathic Polysaccharides -- 2.2.2 Lipoproteins -- 3 Biological Properties of Biosurfactants -- 4 Role of Biosurfactants in Biodegradation -- 5 In vitro Cytotoxic Effects of Biosurfactants -- 5.1 Breast Cancer -- 5.2 Colon Cancer -- 5.3 Leukemia -- 5.4 Liver Cancer -- 5.5 Other Cancer Types -- 6 Conclusion -- 7 Challenges and Future Prospects of Biosurfactants -- References -- Comparison of Biodegradability, and Toxicity Effect of Biosurfactants with Synthetic Surfactants -- 1 Introduction -- 2 The Environmental Impact of Synthetic Surfactants -- 3 Cytotoxicity of Surfactants and Biosurfactants. , 4 Biodegradation of Biosurfactants -- 5 Synthetic Surfactants and Biosurfactants in the Cosmetic Industry -- 6 Biosurfactants Applied in the Food Industry -- 7 Future Directions -- 8 Conclusions -- References -- Surface Activity and Emulsification Properties of Saponins as Biosurfactants -- 1 Introduction -- 2 Structure Diversity and Properties -- 3 Surface Properties of Saponins -- 4 Critical Micelle Concentration -- 5 Saponins as Biosurfactants -- 6 Saponin-Stabilized Nanoemulsions -- 7 Conclusion -- References -- Part II: Biosurfactants: Current Industrial Applications -- Biosurfactants as Emulsifying Agents in Food Formulation -- 1 Introduction -- 2 Roles of Additives and Importance of Biosurfactants in the Food Sector -- 2.1 Roles of Additives in the Food Sector -- 2.1.1 Freshness Maintenance -- 2.1.2 Safety Maintenance -- 2.1.3 Improving the Appearance and Texture -- 2.1.4 Maintenance and Improvement of Nutritional Value -- 2.2 Importance of Emulsifiers and Surfactants in the Food Sector -- 3 Biosurfactants in Food Formulations as the Emulsifiers -- 3.1 Food Formulations as Enhanced by Biosurfactants -- 3.2 Evacuating Heavy Metals from Foods Using Biosurfactants -- 3.3 Sanitations of Food Processing Using Biosurfactants -- 3.4 Biosurfactants as Food Additives -- 4 Conclusion -- References -- Application of Biosurfactants as Anti-Corrosive Agents -- 1 Introduction -- 2 An Introduction to Biosurfactants -- 3 Biosurfactants as Anti-Corrosive Agents for Corrosion -- 4 Biosurfactants as Biocides for Biocorrosion -- 5 Conclusion -- References -- Role of Biosurfactants in Nanoparticles Synthesis and their Stabilization -- 1 Introduction -- 1.1 Biosynthesis of Microbial Nanoparticles -- 2 Biosurfactants -- 2.1 Sources of Biosurfactants -- 2.2 Isolation and Selection of Biosurfactant-Producing Microbes -- 2.3 Use of Cheaper Substrates. , 3 Biosurfactants: Types, Structures, and Properties -- 3.1 Structure -- 3.2 Types -- 3.3 Properties -- 4 Advantages of Biosurfactants -- 5 Biological Synthesis of Nanoparticles -- 5.1 Biosurfactant-Mediated Nanoparticle Synthesis -- 5.2 Mechanism of Biosurfactant-Mediated Nanoparticle Synthesis -- 6 Role of Biosurfactants in Biosynthesis of Metallic Nanoparticles (Me-NPs) -- 7 Glycolipids Biosurfactants Produced Nanoparticles -- 7.1 Lipopeptides Biosurfactants Produced Nanoparticles -- 8 Chemical Surfactants and Nanoparticles -- 9 The Antimicrobial and Cellular Activity of Nanoparticles -- 10 Use of Lipoproteins and Lipopeptides in the Synthesis of Nanoparticles -- 11 Use of Glycolipopeptides, Glycopeptides, and Glycoproteins in the Formation of Nanoparticles -- 12 Conclusions and Future Perspective -- References -- New Trends in the Textile Industry: Utilization and Application of Biosurfactants -- 1 Textile Industry -- 2 Textile Effluent -- 2.1 Dye Toxicity -- 3 Conventional Treatment of Textile Industrial Effluents -- 4 Role of Biosurfactants in Promoting Environmental Sustainability -- 4.1 Application of Biosurfactant in the Textile Industry -- 5 Conclusion and Future Perspectives -- References -- Biosurfactants as an Eco-Friendly Technology in Heavy Metal Remediation -- 1 Environmental Contamination by Heavy Metals -- 2 Role of Biosurfactants in Metal Remediation -- 3 Mechanism of the Process of Heavy Metals Removal by Biosurfactants -- 4 Applications of the Process -- 5 Biosurfactants in Co-Contaminated Sites Remediation -- 6 Patents of Biosurfactants for Application in the Removal of Heavy Metals -- 7 Conclusion and Future Perspectives -- References -- Biosurfactants and Their Perspectives for Application in Drug Adsorption -- 1 Introduction -- 2 Characteristics of Biosurfactants. , 3 General Concepts of the Adsorption Technique in the Liquid Phase -- 4 Influence of Biosurfactants on Drug Adsorption -- 5 Conclusion and Future Perspectives -- References -- Role of Biosurfactants in Promoting Biodegradation in Waste Treatment -- 1 Introduction -- 2 Waste Management -- 2.1 Toxicity of Waste Containing Hazardous Pollutants -- 3 Bioremediation in Waste Management and Treatment -- 3.1 Land Treatment -- 3.2 Composting/Biopile -- 3.3 Bio-slurry Treatment -- 4 Microbial Degradation of Organic Pollutants Found in Waste -- 5 The Processes Involved in the Biodegradation of Hydrocarbons -- 5.1 Factors Affecting the Rate of Degradation -- 6 Role of Surfactants in the Degradation of Organic Pollutants -- 6.1 Classification and Properties of Surfactants -- 6.2 Toxicity of Surfactants and Biosurfactants -- 6.3 Types of Biosurfactants and Biosurfactant Producing Microorganisms -- 7 Conclusion -- References -- Role of Biosurfactants in Agriculture Management -- 1 Introduction -- 2 Unique Properties of Biosurfactants -- 3 Role of Biosurfactants in Biofilm Formation and Root Colonization -- 4 Potential of Biosurfactants as Antifungal Agents -- 5 Mechanism for Antimicrobial Action -- 6 Role of Biosurfactants in Nutrient Bioavailability in the Soil -- 7 Biosurfactants in Pesticide Degradation and Soil Rehabilitation -- 8 Conclusion and Future Prospects -- 9 Commercial Resources of Biosurfactants -- 10 Suggested Reviewers. -- References -- Biosurfactants and Their Benefits for Seeds -- 1 Introduction -- 2 Antimicrobial Properties -- 3 Stimulation of Plant Immunity -- 4 Bioremediation Properties -- 5 Non-phytotoxicity of Biosurfactants -- 6 Potent Plant Growth Promoter -- 7 Synergistic Action of Biosurfactants -- 8 Conclusion -- 9 Companies, Organizations, and Research Groups Working on the Topic -- References. , Role of Biosurfactants in Marine Sediment Remediation of Organic Pollutants.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Organometallic compounds. ; Organometallic compounds-Analysis. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (445 pages)
    Ausgabe: 1st ed.
    ISBN: 9783527840939
    Sprache: Englisch
    Anmerkung: Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Editors -- Chapter 1 Organometallic Compounds: The Fundamental Aspects -- 1.1 Introduction -- 1.1.1 Organometallic Chemistry -- 1.1.2 Organometallic Compounds -- 1.1.3 Structure of Organometallic Compound -- 1.2 Milestones in Organometallic Compounds -- 1.2.1 Equation (1.1): Synthesis of First Organometallic Compound -- 1.2.2 Equation (1.2): Preparation of Zeise's Salt -- 1.2.3 Equations (1.3)-(1.5): Preparation of Organochlorosilane Compound -- 1.2.4 Equation (1.6): Synthesis of First Metal Carbonyl Compound -- 1.2.5 Equation (1.7): Synthesis of First Binary Metal Carbonyl Complex -- 1.2.6 Equation (1.8): Barbier Reaction -- 1.2.7 Equation (1.9): Synthesis of Organic Compound Using a Grignard Reagent -- 1.2.8 Equations (1.10) and (1.11): Synthesis of Alkyllithium Compound -- 1.2.9 Equations (1.12) and (1.13): Synthesis of Organolithium Compound -- 1.2.10 Equation (1.14): Hydroformylation Reaction -- 1.2.11 Equation (1.15): Synthesis of Organochlorosilane Compound -- 1.2.12 Equation (1.16): Trimerization of Acetylene -- 1.2.13 Equation (1.17): Synthesis of Ferrocene -- 1.2.14 Equation (1.18): Asymmetric Catalysis Reaction -- 1.2.15 Equation (1.19): Palladium Catalyzed Suzuki Coupling Reaction -- 1.2.16 Equation (1.20): Synthesis of Bucky Ferrocene -- 1.3 Stability of Organometallic Compounds -- 1.4 Properties of Organometallic Compounds -- 1.5 Basic Concepts in Organometallic Compounds -- 1.5.1 18‐Electron Rule -- 1.5.1.1 Statement of 18 Electron Rule -- 1.5.1.2 Examples -- 1.5.2 Π -Back Bonding or Back Donation -- 1.5.3 Hapticity ηx -- 1.6 Hapticity of Ligands -- 1.7 Change in Hapticity -- 1.8 Hapticity Verses Denticity -- 1.9 Counting of Electrons and Finding out Metal-Metal Bonds -- 1.9.1 Calculating the Number of Metal-Metal Bonds. , 1.9.2 Writing the Probable Structure of Compound -- 1.9.3 How to Draw the Probable Structure of Ni(η1‐C3H5) (η3‐C3H5) -- 1.9.4 How to Draw the Probable Structure of (μ‐CO)‐[η5‐CpRh]3(CO) -- 1.10 Metals of Organometallic Compounds -- 1.10.1 Organometallic Compounds of Transition Metals -- 1.10.2 The Bonding and Structure in Different Metal complexes -- 1.10.2.1 Alkene Complexes -- 1.10.2.2 Allyl Complexes -- 1.10.2.3 Carbonyl Complexes -- 1.10.2.4 Metallocenes -- 1.10.2.5 Dihydrogen Complexes -- 1.10.2.6 Transition Metal Carbene Complex -- 1.11 Importance of Organometallic Compounds -- 1.11.1 Types of Organometallic Compounds -- 1.11.2 Uses of Organometallic Compounds -- 1.12 Conclusions -- References -- Chapter 2 Nomenclature of Organometallic Compounds -- 2.1 Introduction -- 2.2 Aim of the Nomenclature -- 2.3 Type of Nomenclature System -- 2.3.1 Binary Nomenclature -- 2.3.2 Substitutive Nomenclature -- 2.3.3 Additive Nomenclature or Coordination nomenclature -- 2.4 Concepts and Conventions -- 2.4.1 Oxidation Number -- 2.4.2 Coordination Number -- 2.4.3 Chelation -- 2.4.4 Ligands -- 2.4.5 Specifying Connectivity - The Kappa (κ) Convention -- 2.4.6 Bridging Ligands - The Mu (μ) Convention -- 2.4.7 Hapticity - The Eta (η) Convention -- 2.5 Regulations Concerning the Nomenclature of Transition Element Organometallic Compounds -- References -- Chapter 3 Classification of Organometallic Compounds -- 3.1 Introduction -- 3.2 Classification of Organometallic Compound -- 3.2.1 Sigma‐Bonded Organometallic Compound -- 3.2.2 π‐Bonded Organometallic Compounds -- 3.2.3 Ionic Bonded Organometallic Compounds -- 3.2.4 Multicentered Bonded Organometallic Compounds -- 3.2.4.1 Based on Heptacity (η1 to η8): -- 3.3 Grignard Reagent (G.R.) -- 3.3.1 Physical Properties -- 3.3.2 Chemical Properties -- 3.3.2.1 Alkanes -- 3.3.2.2 Alkenes -- 3.3.2.3 Alkynes -- 3.3.2.4 Ethers. , 3.3.2.5 Reaction with carbon dioxide -- 3.3.2.6 Insertion Reaction -- 3.3.2.7 Synthesis of Silicones -- 3.3.2.8 Nucleophilic Substitution -- 3.4 Organozinc Compounds -- 3.4.1 Physical Properties -- 3.4.2 Chemical Properties -- 3.5 Organolithium Compounds -- 3.5.1 Reaction Resembling Grignard Reagents -- 3.5.2 Reactions Different from Grignard Reagents -- 3.6 Organosulfur Compounds -- 3.6.1 Physical Properties -- 3.6.2 Chemical Properties -- 3.6.3 Properties Different from Alcohols -- 3.7 Conclusion -- References -- Chapter 4 Synthesis Methods of Organometallic Compounds -- 4.1 Introduction -- 4.2 Synthesis Methods of Organometallic Compounds -- 4.2.1 Electrochemical Methods for the Synthesis of Organometallic Compounds -- 4.2.1.1 Synthesis of Cyano Cu(I) Complexes in the Electrochemical Cell -- 4.2.1.2 Synthesis of an Organorhenium Cyclopentadienyl Complex in the Electrochemical Cell -- 4.2.1.3 Synthesis of N‐heterocyclic Carbene Complexes in the Electrochemical Cell -- 4.2.1.4 Synthesis of Organocopper (I) π‐Complexes in the Electrochemical Cell -- 4.2.1.5 Synthesis of Organonickel σ‐Complexes in the Electrochemical Cell -- 4.2.2 Synthesis of Organic Compounds in the Electrochemical Cell by Metal organic Catalysts -- 4.2.2.1 The Synthesis of Organic Compounds in the Electrochemical Cell by the Ni‐Organic Catalyze -- 4.2.2.2 The Synthesis of Organic Compounds in the Electrochemical Cell by the Pd‐Organic Catalyses -- 4.2.2.3 Synthesis of Organic Compounds in the Electrochemical Cell by the Sm‐Organic Catalyses -- 4.2.3 Synthesis of Organometallic Nucleosides -- 4.2.3.1 A Category: Main Compounds -- 4.2.3.2 A1 Subcategory: Main Compounds -- 4.2.3.3 B Category: Main Compounds -- 4.2.3.4 C Category: Main Compounds -- 4.2.3.5 C1 Subcategory: Main Compounds -- 4.2.3.6 D Categories: Main Compounds -- 4.3 Conclusions -- Acknowledgment. , Authors Contributions -- Conflicts of Interest -- References -- Chapter 5 Metal Carbonyls: Synthesis, Properties, and Structure -- 5.1 Introduction -- 5.2 Classification of Metal Carbonyls -- 5.2.1 Classification Based on Coordinated Ligands -- 5.2.1.1 Homoleptic Carbonyls -- 5.2.1.2 Heteroleptic Carbonyls -- 5.2.2 Classification Based on Number of Metals and the Constitution of Carbonyls -- 5.2.2.1 Mononuclear Carbonyl Complexes -- 5.2.2.2 Polynuclear Carbonyl Complexes -- 5.3 Synthesis of Metal Carbonyls -- 5.3.1 Direct Reaction of Metal with Carbon Monoxide -- 5.3.2 Reductive Carbonylation -- 5.3.3 Photolysis and Thermolysis -- 5.3.4 Abstraction of CO from a Reactive Organic Carbonyl Compounds -- 5.4 Properties of Metal Carbonyls -- 5.4.1 Physical Properties -- 5.4.2 Chemical Properties -- 5.4.2.1 Ligand Substitution Reactions -- 5.4.2.2 Reaction with Sodium Metal -- 5.4.2.3 Reaction with Sodium Hydroxide -- 5.4.2.4 Reaction with Halogens -- 5.4.2.5 Reaction with Hydrogen -- 5.4.2.6 Reaction with Nitricoxide (NO) -- 5.4.2.7 Disproportionation -- 5.5 Structure of Metal Carbonyls -- 5.5.1 Structures of Some Mononuclear Carbonyl Complexes -- 5.5.2 Structures of Some Bi and Polynuclear Carbonyl Complexes -- 5.6 Bonding in Metal Carbonyls -- 5.6.1 Formation of Mixed Atomic Orbitals -- 5.7 Synergistic Effect -- 5.8 Conclusion -- Further Reading -- References -- Chapter 6 Metal-Carbon Multiple Bonded Compounds -- 6.1 Introduction -- 6.2 Nomenclature -- 6.3 Classifications -- 6.3.1 Metal-alkylidene Complexes -- 6.3.2 Metal-alkylidyne Complexes -- 6.4 Structure -- 6.4.1 Alkylidene (Carbene) -- 6.4.2 Carbyne (Alkylidyne) -- 6.5 Preparation Methods -- 6.5.1 Metal-alkylidene Complexes -- 6.5.1.1 By Nucleophilic Carbene -- 6.5.1.2 By Electrophilic Alkylidenes -- 6.5.2 Metal-alkylidyne Complexes -- 6.6 Important Reactions. , 6.6.1 Reaction of Alkylidene Metathesis -- 6.6.2 Important Reaction of Alkylidyne Metathesis -- 6.7 Applications -- References -- Chapter 7 Metallocene: Synthesis, Properties, and Structure -- 7.1 Introduction -- 7.2 Structure of Metallocene -- 7.3 Synthesis of Metallocene -- 7.4 Chemical Properties of Metallocene -- 7.4.1 Ferrocene and Its Derivatives -- 7.4.2 Other Metallocene Sandwiches -- 7.4.3 Main‐group Metallocene -- 7.4.4 Metal-bis‐arene Sandwich Complexes -- 7.4.4.1 General View -- 7.4.4.2 Structure -- 7.4.4.3 Reactions -- 7.5 Conclusion -- References -- Chapter 8 σ‐Complexes, π‐Complexes, and ηn‐CnRn Carbocyclic Polyenes‐Based Organometallic Compounds -- 8.1 Introduction -- 8.2 σ‐Bond Containing Organometallic Compounds -- 8.2.1 Metal Carbonyl -- 8.2.1.1 General Overview -- 8.2.1.2 Syntheses of Metal Carbonyls -- 8.2.1.3 Structure of Metal Carbonyls -- 8.2.1.4 Reactions of Metal Carbonyls -- 8.2.2 Metal-Alkyl, -Vinyl, and -Hydride Complexes -- 8.2.2.1 Metal Alkyls -- 8.2.2.2 Metal Vinyls -- 8.2.2.3 Metal Hydrides -- 8.2.2.4 Metal-Carbene Complexes -- 8.3 π‐Bond Containing Organometallic Compounds -- 8.3.1 Metal-Olefin Complexes -- 8.3.1.1 General Overview -- 8.3.1.2 Syntheses of Metal-Olefin Complexes -- 8.3.1.3 Reactions of Metal-Olefin Complexes -- 8.3.2 Metal-Diene Complexes -- 8.3.3 Metal-Alkyne Complexes -- 8.3.4 π-Allyl Complexes -- 8.3.4.1 Structure of π-Allyl Complexes -- 8.3.4.2 Syntheses of π-Allyl Complexes -- 8.3.4.3 Reactions of π-Allyl Complexes -- 8.4 ηn‐CnRn Carbocyclic Polyenes Containing Organometallic Compounds -- 8.4.1 Cyclopropenyls, η3‐C3R3 -- 8.4.2 Cyclobutadienes, η4‐C4R4 -- 8.4.3 Cyclopentadienyls, η5‐C5R5 -- 8.4.3.1 General Overview -- 8.4.3.2 Structure of Metallocene -- 8.4.3.3 Syntheses of Metallocene -- 8.4.3.4 Chemical Properties of Metallocene -- 8.4.3.5 Applications of Metallocene -- 8.5 Conclusion. , References.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    Schlagwort(e): Chalcogenides. ; Nanocomposites (Materials). ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (283 pages)
    Ausgabe: 1st ed.
    ISBN: 9780443188084
    Serie: Woodhead Publishing Series in Composites Science and Engineering Series
    DDC: 546.72
    Sprache: Englisch
    Anmerkung: Front Cover -- Metal-Chalcogenide Nanocomposites -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1 Chalcogenides and their nanocomposites: fundamental, properties and applications -- 1.1 Introduction -- 1.1.1 Thin film-based supercapacitor -- 1.1.1.1 Thin film-based perovskite solar cells -- 1.2 Metal chalcogenide thin film-based solar cells -- 1.3 Antibacterial applications of thin films -- 1.4 Future perspective/outlook -- 1.5 Conclusion -- Acknowledgment -- References -- 2 Chalcogenides and their nanocomposites in environmental remediation -- 2.1 Introduction -- 2.2 Experimental -- 2.2.1 Hydrothermal method -- 2.2.2 Sonication method -- 2.2.3 Microemulsion method -- 2.2.4 Solvothermal method -- 2.2.5 Sol-gel method -- 2.3 Results and discussion -- 2.3.1 Sulfides (S) chalcogenides -- 2.3.2 Selenide (Se) chalcogenides -- 2.3.3 Tellurides (Te) chalcogenides -- 2.3.4 CO2 reduction -- 2.3.5 Heavy metal removal -- 2.4 Conclusion and future perspectives -- References -- 3 Chalcogenides and their nanocomposites in photocatalytic reactions -- 3.1 Introduction -- 3.2 Chalcogenides for the photocatalytic hydrogen evolution -- 3.2.1 General synthesis approaches of chalcogenides -- 3.2.2 Chalcogenides and their photocatalytic activities -- 3.2.2.1 Molybdenum-based chalcogenides -- 3.2.2.2 Zinc based chalcogenides -- 3.2.2.3 Copper based chalcogenides -- 3.2.2.4 Vanadium based chalcogenides -- 3.2.2.5 Cadmium based chalcogenides -- 3.2.2.6 Tin based chalcogenides -- 3.2.2.7 Titanium-based chalcogenides -- 3.3 Conclusions and perspectives -- References -- 4 Metal chalcogenides and their nanocomposites in water purification systems -- 4.1 Introduction -- 4.1.1 Background of chalcogenides -- 4.1.1.1 Methods of preparation -- Solvothermal method -- Electrospinning method -- Coprecipitation method. , 4.2 Removal of synthetic dyes using metal chalcogenide nanocomposites -- 4.3 Removal of toxic heavy metal ions using metal chalcogenides nanocomposites -- 4.4 Removal of residual antibiotics using metal chalcogenides nanocomposites -- 4.5 Future perspective/outlook -- 4.6 Conclusion -- References -- 5 Metal chalcogenides and their nanocomposites in industrial effluents treatments -- 5.1 Introduction -- 5.2 Role of metal chalcogenides -- 5.3 Conclusion -- References -- 6 Heterostructured transition metal chalcogenides photocatalysts for organic contaminants degradation -- 6.1 Introduction -- 6.2 Methods for wastewater treatment -- 6.2.1 Homogeneous photocatalysis -- 6.2.2 Heterogeneous photocatalysis -- 6.3 Transition metal chalcogenides -- 6.4 Synthesis methodologies -- 6.4.1 Hot-Plate method -- 6.4.2 One-pot heat-up method -- 6.4.3 Hydro/solvothermal method -- 6.4.4 Electrospinning -- 6.4.5 Sonochemical -- 6.5 Characterizations -- 6.6 TMCs as heterogeneous photocatalysts -- 6.7 Application for photocatalytic degradation of organic pollutants -- 6.7.1 Dyes -- 6.7.2 Pesticides and endocrine disruptors -- 6.7.3 Pharmaceuticals -- 6.8 Conclusion -- References -- 7 Chalcogenides and their nanocomposites in heavy metal decontamination -- 7.1 Introduction -- 7.2 Traditional heavy metal treatment -- 7.2.1 Ion exchange methods -- 7.2.2 Adsorption methods -- 7.3 Photocatalytic heavy metal treatment -- 7.4 Conclusion and future perspectives -- Acknowledgments -- Declaration of competing interest -- References -- 8 Chalcogenides and their nanocomposites in oxygen reduction -- 8.1 Introduction -- 8.2 Molybdenum based electrocatalysts -- 8.3 Ruthenium based electrocatalysts -- 8.4 Cobalt based chalcogenides -- 8.5 Rhenium based electrocatalysts -- 8.6 Iridium based electrocatalysts -- 8.7 Other electrocatalysts -- 8.8 Conclusion -- References. , 9 Nanocomposites of chalcogenides as super capacitive materials -- 9.1 Introduction -- 9.2 Chalcogenides as promising electrodes for SCs -- 9.2.1 Nickel-based chalcogenides and their composites for SCs -- 9.2.1.1 Copper-based selenides and their composites for SCs -- 9.2.1.1.1 Manganese-based chalcogenides and their composites for SCs -- 9.3 Conclusion -- References -- 10 Metal-chalcogenides nanocomposites as counter electrodes for quantum dots sensitized solar cells -- 10.1 Introduction -- 10.2 QD sensitizers -- 10.3 Counter electrodes -- 10.4 Interface modification layer -- 10.5 Conclusion -- Acknowledgments -- Author Contributions -- Notes -- References -- 11 II-VI semiconductor metal chalcogenide nanomaterials and polymer composites: fundamentals, properties, and applications -- 11.1 Introduction -- 11.2 Structure and chemical properties of II-VI chalcogenide nanomaterials -- 11.3 Different properties of II-VI chalcogenide nanomaterials -- 11.3.1 Electrical and optical properties -- 11.3.2 Thermal properties -- 11.3.3 Physical properties -- 11.3.3.1 Refractive index and dispersion -- 11.3.3.2 Linear loss mechanisms -- 11.3.3.3 Photo-induced phenomena -- 11.4 Chemical Synthesis of II-VI chalcogenide nanomaterials and polymer composites -- 11.4.1 Chemical route for preparation of II-VI chalcogenide nanocrystals in powder form -- 11.4.2 Synthesis of thin films embedded in polymers -- 11.5 Applications of chalcogenides nanomaterials -- 11.5.1 Applications of chalcogenide nanomaterials and heterostructures for quantum dot LEDs -- 11.5.2 Applications of chalcogenide nanomaterials and their heterostructures for photocatalysis -- 11.5.3 Applications of chalcogenides nanomaterials heterostructures for solar cell -- 11.5.3.1 Thin film photovoltaic cell -- 11.5.3.2 Polymer/quantum dot hybrid organic-inorganic solar cell. , 11.5.3.3 Chalcogenides nanostructures for hybrid photovoltaic cell -- 11.6 Summary and future scope -- References -- 12 Challenges and opportunities of chalcogenides and their nanocomposites -- 12.1 Introduction -- 12.1.1 Introduction to chalcogens -- 12.1.2 Introduction to chalcogenides -- 12.1.3 Classification of chalcogenides based on the number of elements -- 12.1.3.1 Binary chalcogenides -- 12.1.3.2 Ternary chalcogenides -- 12.1.3.3 Quaternary chalcogenides -- 12.1.4 Classification of chalcogenides based on the number of chalcogen ions -- 12.1.4.1 Mono-chalcogenides -- 12.1.4.2 Dichalcogenides -- 12.1.4.3 Trichalcogenides -- 12.1.5 Chalcogenide nanomaterials -- 12.1.5.1 Metal-based chalcogenides -- 12.1.5.2 Noble metal-based chalcogenides -- 12.1.5.3 Chalcogenide composites -- 12.2 Synthesis of metal chalcogenide and their nanocomposites -- 12.2.1 Hot-injection method -- 12.2.2 Hydrothermal method -- 12.2.3 Solvothermal method -- 12.2.4 Microwave method -- 12.2.5 Sonochemical method -- 12.2.6 Growth of metal chalcogenide nanostructure arrays on substrates -- 12.3 Preparation of chalcogenide nanocomposites -- 12.3.1 Preparation of metal chalcogenide nanocomposites with carbon materials -- 12.3.2 Preparation of chalcogenide nanocomposites with noble metals -- 12.3.3 Preparation of chalcogenide nanocomposites with metal oxides -- 12.4 Application of chalcogenide and their nanocomposites -- 12.4.1 Photocatalysts -- 12.4.2 Environmental remediation -- 12.4.3 Reduction of nitroaromatic compounds -- 12.4.4 Supercapacitors -- 12.4.5 Lithium-ion batteries -- 12.4.6 Water splitting -- 12.4.7 CO2 activation -- 12.5 Future prospects of chalcogenides -- 12.6 Conclusion -- References -- Index -- Back Cover.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...